biocomplexity grant from NSF. He received his bachelor’s degrees in electrical engineering and physics from Universidade de Sao Paulo in Brazil and his PhD from California Institute of Technology

Viola Vogel is director of the Center for Nanotechnology and professor of bioengineering at the University of Washington. Her research program is focused on investigating how to control the assembly of molecular building blocks into supramolecular complexes with predictable architecture. It involves nanoscale surface patterning, molecular motors and switches, biomaterials, assembly of extracellular matrix proteins, cell/surface interactions, biomineralization, surface analysis, optical spectroscopy, and microscopy. She received her PhD in physics from Johann-Wolfgang Goethe University in Frankfurt/Main


The panel devoted most of its effort to the discussion of appropriate content for an introductory physics course. The concepts that they felt were appropriate are listed in the body of the report. The panel concluded that physics plays three roles in the education of the future research biologist. First, there are the specific and quantitative principles of physics on which a microscopic understanding of biology is ultimately based, and on which much of the instrumentation of biological research is also based. Understanding better how these principles are reflected in biology becomes important as biological research becomes more quantitative, develops further quantitative models, and becomes even more heavily reliant on experimental physical techniques. Second, and more abstract, physics is a more mature science with far less complexity than biology, in which a student can more easily learn about the interactive relationship between experiments, theory, modeling, and analysis. Third, much of physics is about the behavior of dynamical systems. Biologists need to understand dynamics, for biology is fundamentally a driven, dissipative system, not an equilibrium system. For most students, 1 to 1.5 years of a physics course with an appropriate curriculum can make significant progress toward accomplishing these three objectives. Additional physics-based and engineering-based courses emphasizing biology should also be available at major institutions. The panel anticipates that an increasing number of physics/engineering majors or double majors in physics/engineering and biology will go into graduate education in biology.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement