trol of cell volume, electrical activity of neurons, renal countercurrent mechanism, muscle mechanics) or population biology (epidemic and endemic disease, ecological dynamics, population genetics, evolution). Mathematical models would either involve systems of algebraic equations (accessible with high school mathematics) or ordinary differential equations (made tractable and understandable via Euler’s method without any formal course in differential equations required). Simulations involving random numbers can also be done with only an intuitive introduction to probability and the use of a random number generator. A computer language such as Matlab makes it easy to write programs that implement Euler’s method (and other similar methods), and also provides easy access to graphical output, including animations. Black-box software that solves differential equations should be avoided because it short-changes the educational value of seeing how the problem is actually being solved.

The senior-level interdisciplinary course could reprise many of the same topics at a different level of sophistication. Where the first-year course might have considered only point neurons, for example, the senior course might consider spatially distributed neurons, thus moving up mathematically from ordinary to partial differential equations. Again, numerical methods provide a path to understanding without a formal course in partial differential equations. Besides the use of more advanced methods, the senior-level course should be characterized by a greater emphasis on original research projects conducted by the students. The projects in this course would be similar to senior theses, but would be done at least in some cases by teams of students, and in all cases in the context of a group of like-minded students, engaged in similar interdisciplinary efforts, to whom the work would eventually be reported.

Competency and Expertise in Computer Science

The panel recommended that all biology students receive instruction in computer science. It is useful to distinguish three levels of aspiration concerning the role of computer science in undergraduate biology education.

Fluency with Information Technology

The goal is to prepare biology students to use information technology today and to adapt to changes in information technology in the future.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement