earth. Much of today’s biomedical research is at the interface between biology and the physical, mathematical, or information sciences. Most colleges and universities already require their biology majors to enroll in courses in mathematics and physical science. However, faculty often do not integrate these subjects into the biology courses they teach. This can result in students with a shortsighted view of the connections between all the scientific disciplines involved in the study of the biological world, and produce students who do not see the relevance of their other science courses to their chosen field of study.

Laboratory Experience

Independent work, both inside and outside the classroom, is a wonderful way to expose students to the world of science. Class projects can provide opportunities for students to analyze original data, experience teamwork, and practice scientific writing and presentation skills. Independent research gives students a real world view of life as a researcher. Colleges and universities should provide all students with opportunities to become engaged in research, whether that be in an on-campus independent research experience with faculty; an internship at nearby institutions (biotechnology or pharmaceutical companies, national laboratories, government agencies, independent research centers, or other academic institutions); or through an extended research-based project in a course and/or laboratory.

Quantitative Skills

The lack of a quantitative viewpoint in biology courses can result in students who are mathematically talented losing interest in studying the life sciences. While not all students who pursue an education in the biomedical sciences have an equal interest or predilection for mathematics, it is important that all students understand the growing relevance of quantitative science in addressing life-science questions. Thus, a better integration of quantitative applications in biology would not only enhance life science education for all students, but also decrease the chances that mathematically talented students would reject life sciences as too soft. Similar consideration must be given to the integration of physics and chemistry into a life science curriculum. In biomedical research today, complex questions are usually addressed by teams of scientists that bring different perspectives and insights to the issues being studied. Many of today’s top

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement