BIO 2010

TRANSFORMING UNDERGRADUATE EDUCATION FOR FUTURE RESEARCH BIOLOGISTS

Committee on Undergraduate Biology Education to Prepare Research Scientists for the 21st Century

Board on Life Sciences

Division on Earth and Life Studies

NATIONAL RESEARCH COUNCIL
OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS
Washington, D.C.
www.nap.edu



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists BIO 2010 TRANSFORMING UNDERGRADUATE EDUCATION FOR FUTURE RESEARCH BIOLOGISTS Committee on Undergraduate Biology Education to Prepare Research Scientists for the 21st Century Board on Life Sciences Division on Earth and Life Studies NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study was supported by Contract Number N01-OD-4-2139, Task Order 64 between the National Academies and the National Institutes of Health and Award Number 71200-500115 between the National Academies and the Howard Hughes Medical Institute. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for the project. Library of Congress Cataloging-in-Publication Data Bio2010 : transforming undergraduate education for future research biologists / Committee on Undergraduate Biology Education to Prepare Research Scientists for the 21st Century, Board on Life Sciences, Division on Earth and Life Studies, the National Research Council of the National Academies. p. cm. Includes bibliographical references and index. ISBN 0-309-08535-7 (pbk.) 1. Biology—Study and teaching (Higher)—United States. I. National Research Council (U.S.). Committee on Undergraduate Biology Education to Prepare Research Scientists for the 21st Century. QH319.A1 B56 2002 570′.71′173—dc21 2002152267 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu Copyright 2003 by the National Academy of Sciences. All rights reserved. Printed in the United States of America

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council. www.national-academies.org

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists COMMITTEE ON UNDERGRADUATE BIOLOGY EDUCATION TO PREPARE RESEARCH SCIENTISTS FOR THE 21ST CENTURY LUBERT STRYER (Chair), Stanford University, Stanford, California RONALD BRESLOW, Columbia University, New York, New York JAMES GENTILE, Hope College, Holland, Michigan DAVID HILLIS, University of Texas, Austin, Texas JOHN HOPFIELD, Princeton University, Princeton, New Jersey NANCY KOPELL, Boston University, Boston, Massachusetts SHARON LONG, Stanford University, Stanford, California EDWARD PENHOET, Gordon and Betty Moore Foundation, San Francisco, California JOAN STEITZ, Yale University, New Haven, Connecticut CHARLES STEVENS, The Salk Institute for Biological Studies, La Jolla, California SAMUEL WARD, University of Arizona, Tucson, Arizona Staff KERRY A. BRENNER, Study Director, Board on Life Sciences ROBERT T. YUAN, Program Officer, Board on Life Sciences JAY B. LABOV, Deputy Director, Center for Education JOAN G. ESNAYRA, Program Officer, Board on Life Sciences BRIDGET K.B. AVILA, Senior Project Assistant, Board on Life Sciences DENISE GROSSHANS, Project Assistant, Board on Life Sciences Editor PAULA T. WHITACRE

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists BOARD ON LIFE SCIENCES COREY S. GOODMAN (Chair), University of California, Berkeley, California R. ALTA CHARO, University of Wisconsin at Madison, Madison, Wisconsin JOANNE CHORY, The Salk Institute for Biological Studies, La Jolla, California DAVID J. GALAS, Keck Graduate Institute of Applied Life Science, Claremont, California BARBARA GASTEL, Texas A&M University, College Station, Texas JAMES M. GENTILE, Hope College, Holland, Michigan LINDA E. GREER, Natural Resources Defense Council, Washington, DC ED HARLOW, Harvard Medical School, Boston, Massachusetts ELLIOT M. MEYEROWITZ, California Institute of Technology, Pasadena, California ROBERT T. PAINE, University of Washington, Seattle, Washington GREGORY A. PETSKO, Brandeis University, Waltham, Massachusetts STUART L. PIMM, Columbia University, New York, New York JOAN B. ROSE, University of South Florida, St. Petersburg, Florida GERALD M. RUBIN, Howard Hughes Medical Institute, Chevy Chase, Maryland BARBARA A. SCHAAL, Washington University, St. Louis RAYMOND L. WHITE, DNA Sciences, Inc., Fremont, California Staff FRANCES E. SHARPLES, Director JENNIFER KUZMA, Senior Program Officer ROBIN A. SCHOEN, Senior Program Officer KERRY A. BRENNER, Program Officer JOAN G. ESNAYRA, Program Officer MARILEE K. SHELTON, Program Officer EVONNE P.Y. TANG, Program Officer ROBERT T. YUAN, Program Officer BRIDGET K.B. AVILA, Senior Project Assistant DENISE GROSSHANS, Project Assistant VALERIE GUTMANN, Project Assistant SETH STRONGIN, Project Assistant

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists This page in the original is blank.

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists Foreword This report continues the National Academies’ efforts in the reform of education by calling on researchers to recognize the importance of teaching and to join together with educators to promote undergraduate learning. The goal in this case is to prepare the next generation of biological researchers for the tremendous opportunities ahead. Attaining this goal will require that faculty spend more time discussing their teaching with their colleagues, both within and outside of their own field or department. The enthusiastic participation of the Bio2010 committee members in this study demonstrates how deeply our leading researchers value education. It also proves that chemists, physicists, mathematicians, and biologists can learn from each other, as well as from talented educators. As the report makes clear, biological research today has reached a very exciting stage, and many more biological scientists with strong backgrounds in physics and chemistry will be needed. Moreover, collaborations between established scientists who were trained in different disciplines will be facilitated if they learn to communicate with its practitioners at an early stage in their careers and appreciate the contributions that each discipline can make to biology. Undergraduate education is a crucial link in the preparation of future researchers. Many university faculty care deeply about education, but most of them have received no training in how to teach. This report offers many suggestions for faculty who would like to improve their teaching. It presents examples of what others have done and resources for further investi-

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists gation. It also calls on colleges, universities, and others to provide support for faculty who want to devote energy to improving teaching and to producing new teaching materials. The National Academies have produced dozens of reports on education in recent years. Many of these reports are useful resources for college faculty. Science Teaching Reconsidered is a handbook for faculty to help them improve their teaching. Transforming Undergraduate Education in Science, Mathematics, Engineering and Technology promotes a vision in which these subjects would become accessible to all students. How People Learn and Inquiry and the National Science Education Standards are written for precollege faculty, but they contain important ideas for everyone on how knowledge of cognitive science can inform teaching and learning. All of these resources are freely available on our Web site at www.nationalacademies.org. Publishing reports is not enough. As a result of ideas presented in this Bio2010 report, the National Academies will launch a pilot program, a Summer Institute for Undergraduate Biology Education. The Institute will bring teams of faculty from research universities together to present them with proven ways to improve student learning, as well as to allow them to share their own expertise concerning effective undergraduate teaching. In closing, I would like to thank Lubert Stryer for his inspired, energetic leadership of this important project, as well as the members of the committee and its staff for each of their critical contributions. They have served the nation well. Bruce Alberts President, National Academy of Sciences Chair, National Research Council

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists Preface Increasingly, biomedical researchers must be comfortable applying diverse aspects of mathematics and the physical sciences to their pursuit of biological knowledge. Biomedical researchers advance society’s understanding of many topics, not just human disease. They work with diverse model organisms and study behavior in systems ranging from the molecular to the organismal using traditional biological techniques as well as high-tech approaches. Undergraduate biology students who become comfortable with the ideas of mathematics and physical sciences from the start of their education will be better positioned to contribute to future discoveries in biomedical research. For this reason the National Institutes of Health and the Howard Hughes Medical Institute asked the National Research Council to evaluate the undergraduate education of this particular group of students. The committee began its work in the fall of 2000. The report recommends a comprehensive reevaluation of undergraduate science education for future biomedical researchers. In particular it calls for a renewed discussion on the ways that engineering and computer science, as well as chemistry, physics, and mathematics are presented to life science students. The conclusions of the report are based on input from chemists, physicists, and mathematicians, not just practicing research biologists. The committee recognizes that all undergraduate science education is interconnected. Changes cannot be made solely to benefit future biomedical researchers. The impact on undergraduates studying other types

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists of biology, as well as other sciences, cannot be ignored as reforms are considered. The Bio2010 report therefore provides ideas and options suitable for various academic situations and diverse types of institutions. It is hoped that the reader will use these possibilities to initiate discussions on the goals and methods of teaching used within their own department, institution, or professional society. This report is the product of many individuals. The committee would like to thank those who participated in the Panel on Chemistry, the Panel on Physics and Engineering, the Panel on Mathematics and Computer Science, and the Workshop on Innovative Undergraduate Biology Education. The names of all these individuals are listed in the appendices of this report. Their input played an essential role in the committee’s deliberations. This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the NRC’s Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report: Norma Allewell, University of Maryland, College Park Wyatt Anderson, University of Georgia Michael Antolin, Colorado State University Susan Chaplin, University of St. Thomas Joan Ferrini-Mundy, Michigan State University Ronald Henry, Georgia State University Nancy Stewart Mills, Trinity University Jeanne Narum, Project Kaleidoscope Paul Sternberg, California Institute of Technology Although the reviewers listed above have provided constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations nor did they see the final draft of the report before its release. The review of this report was overseen by William B. Wood of the University of Colorado and May R. Berenbaum of the University of Illinois. Appointed by the National Research Council, they were responsible

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution.

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists This page in the original is blank.

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists Contents     EXECUTIVE SUMMARY   1 1   INTRODUCTION   10     Major Changes in Research Compel Major Changes in Undergraduate Education,   10     Evidence that Interdisciplinary Education Is Necessary,   12     Research on Education Can Benefit the Teaching of Undergraduate Biology,   14     Case Study #1: Assessment of Undergraduate Research,   19     Statistics on Biology Students,   22     Origin of Bio2010,   23 2   A NEW BIOLOGY CURRICULUM   27     Concepts and Skills for the New Curriculum,   31     Designing New Curricula Suitable for Various Types of Institutions,   47 3   INSTRUCTIONAL MATERIALS AND APPROACHES FOR INTERDISCIPLINARY TEACHING   60     Modules for Course Enrichment,   61     Case Study #2: BioQUEST Curriculum Consortium,   63     Case Study #3: Carbohydrates in Organic Chemistry,   64

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists     Interdisciplinary Lecture and Seminar Courses,   66     Case Study #4: Quantitative Education for Biologists,   68     Case Study #5: Seminar on the Mechanics of Organisms,   71     Teaching Materials,   72 4   ENGAGING STUDENTS WITH INTERDISCIPLINARY AND PROJECT-BASED LABORATORIES   75     The Role of Laboratories,   75     Proposed New Laboratories,   76     Case Study #6: Interdisciplinary Laboratory,   78     Case Study #7: Neurobiology Laboratory,   80     Case Study #8: Workshop Physics,   82 5   ENABLING UNDERGRADUATES TO EXPERIENCE THE EXCITEMENT OF BIOLOGY   87     Incorporating Independent Undergraduate Research Experiences,   87     Seminars to Communicate the Excitement of Biology,   91     Case Study #9: Undergraduate Research Abroad,   92     Increasing the Diversity of Future Research Biologists,   94     Case Study #10: Integrated First-Year Science,   95     Case Study #11: First-Year Seminar on Plagues,   96     Case Study #12: Computational Biology,   98 6   IMPLEMENTATION   101     The Evolving Role of Departments,   102     Faculty,   103     Reform Initiatives and Administrative Support,   104     Facilities,   105     National Networks for Reform,   106     Nurturing the Production of New Books and Other Teaching Materials,   107     Financial Support for Improving Undergraduate Biology Education,   108     Harmonizing the Undergraduate Science Education of Future Graduate Students and Medical Students,   111     The Central Role of Faculty Development in Curriculum Transformation,   112

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists     REFERENCES   117     APPENDIXES         A Charge to the Committee   123     B Biographical Information on Committee Members   125     C Membership of the Panels and Workshops   130     D Chemistry Panel Summary   132     E Physics and Engineering Panel Summary   152     F Mathematics and Computer Science Panel Summary   163     G Workshop on Innovative Undergradute Biology Education   176     INDEX   183

OCR for page R1
Bio 2010: Transforming Undergraduate Education for Future Research Biologists This page in the original is blank.