National Academies Press: OpenBook
Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×

ATOMS, MOLECULES, AND LIGHT

AMO SCIENCE ENABLING THE FUTURE

COMMITTEE FOR AN UPDATED ASSESSMENT OF ATOMIC, MOLECULAR, AND OPTICAL SCIENCE

BOARD ON PHYSICS AND ASTRONOMY

DIVISION ON ENGINEERING AND PHYSICAL SCIENCES

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS
Washington, D.C. www.nap.edu

Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×

THE NATIONAL ACADEMIES PRESS
500 Fifth Street, N.W. Washington, DC 20001

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.

This project was supported by the National Science Foundation under Grant PHY 98-12262 and the Department of Energy under Contract No. DE-FG02-94ER-14451.

Cover: NIST physicist Kris Helmerson looks at a cloud of laser-cooled sodium atoms (the small, bright yellow dot at the center of the photo) that have been trapped by a combination of laser beams and magnetic fields. The atoms, levitated in a vacuum by this magneto-optical trap, have a temperature less than a thousandth of a degree above absolute zero, yet they remain in the gas phase.

Copies of this report are available from:

Board on Physics and Astronomy

National Research Council

500 Fifth Street, N.W.

Washington, DC 20001

www.nationalacademies.org/bpa

Copyright 2002 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council.

www.national-academies.org

Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×

COMMITTEE FOR AN UPDATED ASSESSMENT OF ATOMIC, MOLECULAR, AND OPTICAL SCIENCE

C. KUMAR PATEL,

University of California, Los Angeles,

Chair

WENDELL T. HILL III,

University of Maryland,

Vice Chair

PHILIP H. BUCKSBAUM,

University of Michigan

WOLFGANG KETTERLE,

Massachusetts Institute of Technology

KATE KIRBY,

Harvard-Smithsonian Center for Astrophysics

DANIEL KLEPPNER,

Massachusetts Institute of Technology

PIERRE MEYSTRE,

University of Arizona

WILLIAM E. MOERNER,

Stanford University

MARGARET M. MURNANE,

JILA/University of Colorado at Boulder

WILLIAM D. PHILLIPS,

National Institute of Standards and Technology

RICHART E. SLUSHER,

Lucent Technologies, Bell Labs

DONALD C. SHAPERO, Director

MICHAEL H. MOLONEY, Program Officer (after November 2001)

ACHILLES D. SPELIOTOPOULOS, Program Officer (July 2000-November 2001)

JOEL PARRIOTT, Program Officer (October 1999-July 2000)

KEVIN D. AYLESWORTH, Program Officer (February 1999-October 1999)

CYRA A. CHOUDHURY, Senior Project Associate

NELSON QUIÑONES, Project Assistant

BOARD ON PHYSICS AND ASTRONOMY

JOHN P. HUCHRA,

Harvard-Smithsonian Center for Astrophysics,

Chair

ROBERT C. RICHARDSON,

Cornell University,

Vice Chair

JONATHAN BAGGER,

Johns Hopkins University

GORDON A. BAYM,

University of Illinois at Urbana-Champaign

CLAUDE R. CANIZARES,

Massachusetts Institute of Technology

WILLIAM EATON,

National Institutes of Health

WENDY FREEDMAN,

Carnegie Observatories

FRANCES HELLMAN,

University of California, San Diego

KATHRYN LEVIN,

University of Chicago

CHUAN SHENG LIU,

University of Maryland

LINDA J. (LEE) MAGID,

University of Tennessee at Knoxville

THOMAS M. O’NEIL,

University of California, San Diego

JULIA M. PHILLIPS,

Sandia National Laboratories

BURTON RICHTER,

Stanford University

ANNEILA I. SARGENT,

California Institute of Technology

JOSEPH H. TAYLOR, JR.,

Princeton University

CARL E. WIEMAN,

JILA/University of Colorado at Boulder

DONALD C. SHAPERO, Director

JOEL PARRIOTT, Senior Program Officer

MICHAEL H. MOLONEY, Program Officer

PAMELA LEWIS, Project Associate

NELSON QUIÑONES, Project Assistant

Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×

Preface

With the publication in 1994 of Atomic, Molecular, and Optical Science: An Investment in the Future (the FAMOS report), the National Research Council launched the series Physics in a New Era, its latest survey of physics. Each of the six area volumes in the survey focuses on a different subfield of physics, describing advances since the last decadal survey and suggesting future opportunities and directions. This survey culminated in 2001 with the publication of the seventh and final volume, Physics in a New Era: An Overview.

Since the publication of the FAMOS report, the developments in atomic, molecular, and optical (AMO) science have been amazing. Significant advances in areas such as cooling and trapping, atom and quantum optics, single-atom and single-molecule detection, and ultrafast and ultraintense phenomena, along with the emergence of new applications, made it clear that an update of the FAMOS report was needed. With support from the National Science Foundation and the Department of Energy, the Committee for an Updated Assessment of Atomic, Molecular, and Optical Science was formed. The committee’s statement of task reads as follows:

The committee will prepare a narrative document that portrays the advances in AMO science and its impact on society. The report will:

  • Highlight selected forefront areas of AMO science, emphasizing recent accomplishments and new opportunities.

  • Identify connections between AMO science and other scientific fields, emerging technologies, and national needs.

  • Describe career opportunities for AMO scientists.

To accomplish its task and at the same time reach a broad audience, the committee decided to present its report in the form of a brochure highlighting selected advances, connections, and impacts on national needs. An exhaustive assessment of the field, which will fall within the purview of the next decadal survey, was not the goal of the update.

The committee would like to express its gratitude for the informative interactions it had with many scientists and policy makers. Many colleagues completed a questionnaire and suggested topics to be included in this report. The final selection of topics was made in accordance with the criteria set forth in the statement of task.

While this report was still being written, the tragic events of September 11, 2001, occurred. AMO science and its applications have already played and will continue to play a central role in our nation’s response to terrorist threats from conventional as well as chemical or biological weapons. Some of the technology discussed in this report in the chapter “AMO Science Enhancing National Defense” was used successfully for the U.S. military response in Afghanistan—the Global Positioning System (GPS) and laser-guided munitions are just two examples. AMO science will also enable the development of early detection techniques that will help to neutralize the threat from biological and chemical agents.

Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×

This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Research Council’s Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report: Thomas Appelquist,Yale University; William Bialek, Princeton University; Ronald Cohen, University of California, Berkeley; Thomas Gallagher, University of Virginia; John Goldsmith, Sandia National Laboratories; Erich Ippen, Massachusetts Institute of Technology; Neal Lane, Rice University; Cherry Ann Murray, Lucent Technologies; and Richard Powell, University of Arizona.

Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by Lloyd Armstrong, University of Southern California. Appointed by the National Research Council, he was responsible for making certain that an independent examination of the report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution.

Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×
Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×

Townes and Gordon with one of their first masers (1954).

A CO2-laser-based automobile body welding station (2001).

Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×
Page R1
Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×
Page R2
Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×
Page R3
Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×
Page R4
Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×
Page R5
Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×
Page R6
Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×
Page R7
Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 2002. Atoms, Molecules, and Light: AMO Science Enabling the Future. Washington, DC: The National Academies Press. doi: 10.17226/10516.
×
Page R8
Next: 1 Introduction »
Atoms, Molecules, and Light: AMO Science Enabling the Future Get This Book
×
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

With the publication in 1994 of Atomic, Molecular, and Optical Science: An Investment in the Future (the FAMOS report), the National Research Council launched the series Physics in a New Era, its latest survey of physics. Each of the six area volumes in the survey focuses on a different subfield of physics, describing advances since the last decadal survey and suggesting future opportunities and directions. This survey culminated in 2001 with the publication of the seventh and final volume, Physics in a New Era: An Overview. Since the publication of the FAMOS report, the developments in atomic, molecular, and optical (AMO) science have been amazing.

Significant advances in areas such as cooling and trapping, atom and quantum optics, single-atom and single-molecule detection, and ultrafast and ultra intense phenomena, along with the emergence of new applications, made it clear that an update of the FAMOS report was needed. With support from the National Science Foundation and the Department of Energy, the Committee for an Updated Assessment of Atomic, Molecular, and Optical Science was formed. The committee's statement of task reads as follows: The committee will prepare a narrative document that portrays the advances in AMO science and its impact on society. This report highlights selected forefront areas of AMO science, emphasizing recent accomplishments and new opportunities, identifies connections between AMO science and other scientific fields, emerging technologies, and national needs, describes career opportunities for AMO scientists.

To accomplish its task and at the same time reach a broad audience, the committee decided to present its report in the form of a brochure highlighting selected advances, connections, and impacts on national needs. An exhaustive assessment of the field, which will fall within the purview of the next decadal survey, was not the goal of the update. The committee would like to express its gratitude for the informative interactions it had with many scientists and policy makers. Many colleagues completed a questionnaire and suggested topics to be included in this report. The final selection of topics was made in accordance with the criteria set forth in the statement of task. While this report was still being written, the tragic events of September 11, 2001, occurred. AMO science and its applications have already played and will continue to play a central role in our nation's response to terrorist threats from conventional as well as chemical or biological weapons. Some of the technology discussed in this report in the chapter "AMO Science Enhancing National Defense" was used successfully for the U.S. military response in Afghanistan—the Global Positioning System (GPS) and laser-guided munitions are just two examples. AMO science will also enable the development of early detection techniques that will help to neutralize the threat from biological and chemical agents.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!