understand physical phenomena in laboratory-generated high energy density plasmas and astrophysical systems. Because the field is developing rapidly, a study of compelling research opportunities and synergies among related subfields is particularly pertinent.

Recent advances in extending the energy and power of lasers, particle beams, and Z-pinch generators make extremely high energy density matter accessible in the laboratory. The collective interaction of this matter with itself, particle beams, and radiation fields is a rich and expanding field of physics termed high energy density (HED) physics. It is also a field rich in new physics phenomena and steeped with important applications.

To illustrate the energy scale, let us briefly consider some of the systems (drivers) that deliver the energy in laboratory experiments. Typical state-of-the-art short-pulse lasers and the electron beams generated at the Stanford Linear Accelerator Center can be focused to deliver 1020 W/cm2 on target. The present generation of lasers employed in inertial confinement fusion research (NIKE, OMEGA, and TRIDENT) deliver 1 to 40 kJ to a few cubic millimeters volume, in a few nanoseconds. The Z-pinch experiments at Sandia National Laboratories generate 1.8 MJ of soft x rays in a few cubic centimeters volume in 5 to 15 ns. With the planned upgrades of existing facilities and the completion of the National Ignition Facility (NIF) in the early 2000s, the parameter range of high energy density physics phenomena that can be explored will expand significantly. Complementary technologies, such as gas guns, explosively driven experiments, and diamond anvils can also generate physically interesting high energy density physics conditions in the laboratory. While the primary purpose of the major facilities sponsored by the Department of Energy’s National Nuclear Security Administration (NNSA) is to investigate technical issues related to stockpile stewardship and inertial confinement fusion, there are increasing opportunities on these facilities to explore the basic aspects of high energy density physics.

Although a sizable fraction of high energy density physics research is carried out at national laboratories engaged in inertial confinement fusion and nuclear weapons research, university involvement in physics investigations of high energy density plasmas is growing. University involvement has increased as a result of several factors, including the increased openness of national research facilities to collaborators and the development of relatively inexpensive short-pulse lasers and parallel computing clusters that are powerful enough to access high energy density physics regimes on university-scale facilities.

High energy density experiments span a wide range of areas of physics, including plasma physics, laser and particle beam physics, material science and condensed matter physics, nuclear physics, atomic and molecular physics, fluid dynamics and magnetohydrodynamics, and astrophysics. While a number of scientific areas are



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement