1
Introduction

Our society is now being reshaped by rapid advances in information technologies—computers, telecommunications networks, and other digital systems—that have vastly increased our capacity to know, achieve, and collaborate (Attali, 1992; Brown, 2000; Deming and Metcalfe, 1997; Kurzweil, 1999). These technologies allow us to transmit information quickly and widely, linking distant places and diverse areas of endeavor in productive new ways, and to create communities that just a decade ago were unimaginable.

Of course, our society has been through other periods of dramatic change before, driven by such innovations as the steam engine, railroad, telephone, and automobile. But never before have we experienced technologies that are evolving so rapidly (increasing in power by a hundredfold every decade), altering the constraints of space and time, and reshaping the way we communicate, learn, and think.

The rapid evolution of digital technologies is creating not only new opportunities for our society but challenges to it as well,1 and institutions of every stripe are grappling to respond by adapting their strategies and activities. Corporations and governments are reorganizing to enhance productivity, improve quality, and control costs. Entire industries have been restructured to better align themselves with the realities of the digital age. It is no great exaggeration to say that information technology is fundamentally changing the relationship between people and knowledge.

Yet ironically, at the most knowledge-based entities of all— our colleges and universities—the pace of transformation has been relatively modest in key areas. Although research has in many ways been transformed by information technology, and it



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 5
Preparing for the Revolution: Information Technology and the Future of the Research University 1 Introduction Our society is now being reshaped by rapid advances in information technologies—computers, telecommunications networks, and other digital systems—that have vastly increased our capacity to know, achieve, and collaborate (Attali, 1992; Brown, 2000; Deming and Metcalfe, 1997; Kurzweil, 1999). These technologies allow us to transmit information quickly and widely, linking distant places and diverse areas of endeavor in productive new ways, and to create communities that just a decade ago were unimaginable. Of course, our society has been through other periods of dramatic change before, driven by such innovations as the steam engine, railroad, telephone, and automobile. But never before have we experienced technologies that are evolving so rapidly (increasing in power by a hundredfold every decade), altering the constraints of space and time, and reshaping the way we communicate, learn, and think. The rapid evolution of digital technologies is creating not only new opportunities for our society but challenges to it as well,1 and institutions of every stripe are grappling to respond by adapting their strategies and activities. Corporations and governments are reorganizing to enhance productivity, improve quality, and control costs. Entire industries have been restructured to better align themselves with the realities of the digital age. It is no great exaggeration to say that information technology is fundamentally changing the relationship between people and knowledge. Yet ironically, at the most knowledge-based entities of all— our colleges and universities—the pace of transformation has been relatively modest in key areas. Although research has in many ways been transformed by information technology, and it

OCR for page 5
Preparing for the Revolution: Information Technology and the Future of the Research University is increasingly used for student and faculty communications, other higher-education functions have remained more or less unchanged. Teaching, for example, largely continues to follow a classroom-centered, seat-based paradigm. Nevertheless, some major technology-aided teaching experiments are beginning to emerge, and several factors suggest that digital technologies may eventually drive significant change throughout academia (Newman and Scurry, 2000; Hanna, 2000; Noble, 2001). Because these technologies are expanding by orders of magnitude our ability to create, transfer, and apply information, they will have a profound impact on how universities define and fulfill their missions. In particular, the ability of information technology to facilitate new forms of human interaction may allow the transformation of universities toward a greater focus on learning.2 American academia has undergone significant change before, beginning with the establishment of secular education during the 18th century (Rudolph, 1991). Another transformation resulted from the Land-Grant College Act of 1862 (Morrill Act), which created institutions that served agriculture and industries; academia was no longer just for the wealthy but charged with providing educational opportunities to the working class as well. Around 1900, the introduction of graduate education began to expand the role of the university in training students for careers both scholarly and professional. The middle of the twentieth century saw two important changes: the G. I. Bill, which provided educational opportunities for millions of returning veterans; and the research partnership between the federal government and universities, which stimulated the evolution of the research university. Looking back, each of these changes seems natural. But at the time, each involved some reassessment both of the structure and mission of the university (Wulf, 1995). Already, higher education has experienced significant technology-based change, particularly in research,3 even though it presently lags other sectors in some respects. And we expect that the new technology will eventually also have a profound impact on one of the university’s primary activities—teaching— by freeing the classroom from its physical and temporal bounds and by providing students with access to original source materials (Gilbert, 1995). The situations that students will encounter as citizens and professionals can increasingly be

OCR for page 5
Preparing for the Revolution: Information Technology and the Future of the Research University simulated and modeled for teaching and learning, and new learning communities driven by information technology will allow universities to better teach students how to be critical analyzers and consumers of information. The information society has greatly expanded the need for university-level education; lifelong learning is not only a private good for those who pursue it but also a social good in terms of our nation’s ability to maintain a vibrant democracy and support a competitive workforce. But while information technology has the capacity to enhance and enrich teaching and scholarship, it also appears to pose certain threats to our colleges and universities (Duderstadt, 2000a; Katz, 1999) in their current manifestations. We can now use powerful computers and networks to deliver educational services to anyone—any place, any time. Technology can create an open learning environment in which the student, no longer compelled to travel to a particular location in order to participate in a pedagogical process involving tightly integrated studies based mostly on lectures or seminars by local experts, is evolving into an active and demanding consumer of educational services.4 Similarly, faculty’s scholarly communities are shifting from physical campuses to virtual ones, globally distributed in cyberspace. And technological innovations are stimulating the growth of powerful markets for educational services and the emergence of new for-profit competitors, which could also help reshape the higher-education enterprise (Goldstein, 2000; Shea, 2001). Technological change also has the potential for transforming how the research university accomplishes its social mission. In an increasingly global culture linked together by technology, with no single cultural context to provide a “filter,” the role of traditional disciplinary canons is changing. It is clear that the digital age poses many questions for academia. For example, what will it mean to be “educated” in the twenty-first century? How will academic research be organized and financed? As the constraints of time and space are relaxed by information technology, how will the role of the university’s physical campus change? In the near term it seems likely that the campus, a geographically concentrated community of scholars and a center of culture, will continue to play a central role, though the current

OCR for page 5
Preparing for the Revolution: Information Technology and the Future of the Research University manifestations of higher education may shift. For example, students may choose to distribute their college experience among residential campuses, commuter colleges, and online (virtual) universities. They may also assume more responsibility for, and control over, their education.5 The scholarly activities of faculty will more frequently involve technology to access distant resources and enhance interaction with colleagues around the world. The boundaries between the university and broader society may blur, just as its many roles will become ever more complex and intertwined with those of other components of the knowledge and learning enterprise (Brown and Duguid, 1996). Thus we must take care not simply to extrapolate the past but instead to examine the full range of options for the future, even though their precise impacts on society and its institutions will be difficult to predict. In any case, we must be ready for disruption. Just as these technologies have driven rapid, significant, and frequently discontinuous and unforeseen change in other sectors of our society, so too will they present university decision makers not only with exciting prospects but a decidedly bumpy ride. CONTEXT FOR THE STUDY Given their mandate from Congress to advise the federal government on scientific and technological matters, the presidents of the National Academies (National Academy of Sciences, National Academy of Engineering, and Institute of Medicine) acted on the above concerns. They launched a project in early 2000, through the National Research Council (NRC), to better understand the implications of information technology for the research university. This institution is a key element of the national research enterprise, a prime mover of the economy, and a critical source of scientists and engineers. Its wide range of academic functions also makes it an important model for analysis, with broad applicability elsewhere in the university community. Primary support for the National Academies project was provided by the National Research Council, with additional support from the W.K. Kellogg Foundation, the National Science Foundation, and the Woodrow Wilson Fellowship Foundation.

OCR for page 5
Preparing for the Revolution: Information Technology and the Future of the Research University Box 1-1: What is a Research University? The Carnegie Foundation, in its 1994 classification system of colleges and universities, defined a research university as follows: Offers a full range of baccalaureate programs. Is committed to graduate education through the doctorate. Gives high priority to research. Awards 50 or more doctoral degrees a year. Receives at least $15.5 million a year in federal support. In its updated 2000 classification, redefined solely on the basis of degrees awarded, the Carnegie Foundation listed 261 doctoral/research universities. As of fall 1998, these institutions enrolled over 4.24 million students (about 28% of total enrollment nationwide). These universities were also the recipients of over $10 billion in federal research funding in FY 1998 (about 88% of all federal research funding for higher-education institutions). Source: Compiled by NRC staff from Carnegie Foundation, 2001; Duderstadt, 1999; Kushner, 2001; Chronicle of Higher Education, various issues. The project was organized under the Policy and Global Affairs Division of the NRC, with staff and program support from the Government-University-Industry Research Roundtable. The premise of this study was simple. Although the rapid evolution of digital technology will present numerous challenges and opportunities to the research university, there is a sense that many of the most significant issues are not well understood by academic administrators, their faculty, and those who support or depend on the institution’s activities. The study had two objectives: To identify those information technologies likely to evolve in the near term (a decade or less) that could ultimately have major impact on the research university. To examine the possible implications of these technologies for the research university—its activities (teaching, research, service, outreach) and its organization, management, and financing—and the impacts on the broader higher-education enterprise.

OCR for page 5
Preparing for the Revolution: Information Technology and the Future of the Research University In addressing the second point, the panel examined those functions, values, and characteristics of the research university most likely to change as well as those most important to preserve. In pursuit of these ends, a panel was formed consisting of leaders from industry, higher education, and foundations with expertise in the areas of information technology, the research university, and public policy. Since first convening in February 2000, the Steering Committee has held a number of meetings— including site visits to major technology-development centers such as Lucent (Bell) Laboratories and IBM Research Laboratories—to identify and discuss trends, issues, and options. The major themes addressed by these activities were: The pace of evolution of information technology. The ubiquitous character of the Internet. The relaxation of the conventional constraints of space, time, and institution. The pervasive character of information technology (the potential for near-universal access to information, education, and research). The changing ways in which we handle digital data, information, and knowledge. The growing importance of intellectual capital relative to physical or financial capital. In January 2001 a two-day workshop was held at the National Academies—with the invited participation of about 80 leaders from higher education, industry, and government—to explore possible strategies for the research university and its various stakeholders and to provide input on possible follow-up initiatives. The presentations and discussions of the workshop were videotaped and broadcast on the Research Channel, and they are currently being videostreamed from its web site (programs.researchchannel.com) to help stimulate public discussion. Members of the panel also participated in a discussion of the project at the June 2001 meeting of the Government-University-Industry Research Roundtable. This report, finalized through a series of conference calls and email exchanges during the second half of 2001, discusses what the panel learned during the study process. Chapter 2 describes the likely near-future of information technology;

OCR for page 5
Preparing for the Revolution: Information Technology and the Future of the Research University Chapter 3 discusses the implications of this technology for the research university; and Chapter 4 summarizes the panel’s findings and calls for a continued dialogue between the research university and its stakeholders on these issues. The panel has tried to maintain a clear and focused presentation of the issues. In a number of places, it makes assertions based on its collective judgment, while taking care to alert readers and appropriately qualify those assertions. Where possible, the report references the growing literature on information technology and education in order to complement the panel’s opinions. Yet change is occurring so rapidly there is high risk that any specific assertion made by individual experts or a panel such as this one may be proved wrong within a few years. Indeed, a central theme of the report is that the research university must be prepared to cope with constant shifts and continued uncertainty regarding information technology and its implications. In addition, while this report focuses on the 261 U.S. doctoral/research universities, one of the inevitable consequences of the march of information technology is that these universities will become much more interconnected with the rest of higher education. Therefore much of the discussion deals with the broader academic context, of which the research university is but one component. However, in seeking to gain a broad view of the issues facing the research university and information technology, the panel was unable (given the available time and resources) to examine several issues in the depth it would have liked. Therefore some important topics, such as the service mission of the university, are discussed but briefly. Finally, although its original charge was to provide specific conclusions and recommendations on a range of policy issues— including some, such as the altered funding environment for the research university and the changes to intellectual-property protection wrought by the digital revolution that are spurring legislative actions, roiling campuses, and finding their way to court—the panel ultimately decided that specificity at this point would be inappropriate and premature. Digital technology is evolving so rapidly that an overly prescriptive set of conclusions and recommendations would be in danger of becoming irrelevant soon after the report’s publication. However, the

OCR for page 5
Preparing for the Revolution: Information Technology and the Future of the Research University priorities for action that the panel identified are in areas that institutions and the overall higher-education enterprise can themselves consider and begin to address. And academia might get some assistance in that regard. The digital revolution will undoubtedly create barriers and opportunities that permit new federal and state approaches to provide significant leverage in helping the research university anticipate and manage change.