that needs refinement through classic, hypothesis-driven experimentation. The creation of very large, diverse datasets has created an enormous need for computational tools. Such tools, generically deployed under the banner of bioinformatics, are used to warehouse and make available genomics-derived data, but they are also used to analyze the data and suggest testable hypotheses. Much of this informatics-based science is critically informed by comparing many available genome sequences in the emerging discipline of comparative genomics. Genomics, then, is populated by biologists, chemists, physicists, informaticians, mathematicians, and engineers. This interdisciplinary science has captivated many scientists and driven a huge interest in the field over the last 15 years.

Research and funding priorities in genomics are associated with development of technology platforms and baseline datasets, which often takes place in large technology centers that are explicitly meant to enable a broad research community. Such communities are typically established around research involving one species or a group of related species to leverage the intrinsic power of these organisms, in contrast with the traditional method of designing sets of experiments to test a hypothesis. Therefore, large projects in genomics are often—and vitally—oriented to community service. That demands considerable community alignment toward common goals and requires that lead investigators in large genomic centers recognize that their main responsibility is to provide service to the broader research community. Rapid and open dissemination of the results of genomics research is enabling to all investigators. Without a vibrant research community to empower, the large investments required for success in genomics will be squandered. Without explicit community-service commitments from the genomics leaders of each community, those investments will not be disseminated to the community for broad discovery and application.

Genomics research, supported largely by the National Plant Genome Initiative (NPGI), has already revolutionized plant biology (OSTP 2000). The finished Arabidopsis thaliana genomic sequence and the completed rice draft sequences are landmarks for all of biology (Sanderfoot and Raikhel 2001). There are large reservoirs of sequence

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement