2010 Program or from the NPGI, to accelerate the 2010 Program goals that generate new technology platforms or plant-kingdom-wide reference toolkits aimed at similar goals in the other reference species.

However, it is precisely because Arabidopsis does not do many things of importance in plant biology that we envision the development of functional-genomics toolkits in the reference species. This pertains most obviously to those genes not present in Arabidopsis or that are highly diverged from the closest Arabidopsis homologue. Nevertheless, it is also vital to develop testable hypotheses about gene function among closely related species. Conserved gene function is the key to construction of valid comparative maps and to manipulation of germplasm via breeding (introgression of traits) but can be difficult to assign by sequence alone. This is particularly true when minor amino acid changes can lead to altered function, as in the enzymes of secondary metabolism and transcriptional regulators. Hence, it is vital to develop large collections of sequence-tagged mutants, comprehensive large-insert libraries and physical maps of a variety of important species radiating in an evolutionary sense, from the references. Conserved function can be hypothesized on the basis of synteny (genes flanked by the same genes in two species may be related by descent). This information will drive testable hypotheses about gene function in other organisms. One can test those hypotheses readily by accessing mutant lines in Arabidopsis or the reference species from public stock centers.


Thus far, the plant-biology communities have been technology users, not creators. We endorse expenditure of funds for technology development and infrastructure that address critical questions specific to plant genomics. For example, the lack of high-throughput, robust transformation systems in many plant species and the lack of gene-replacement techniques are impediments to rapid advancement. Equally important, and equally elusive, is the development of cell cultures that maintain a differentiated state.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement