ticle. Emission factors reported in some studies represented a single 24-hour sample, while in others, means of several samples were used. Emission factors from review articles were averaged along with the others. Properly using available data to determine emission factors, if it could be done, would require considering the uniqueness and quality of the data in each study for the intended purpose and weighting it appropriately. The causes of the discrepancies among studies would also have to be investigated.

Adding emissions from housing, manure storage, and field application, or using emission factors determined without considering the interactions of these subsystems, can easily provide faulty estimates of total emissions of NH3. If emissions from a subsystem are increased, those from other subsystems must be decreased. For example, most of the excreted nitrogen is emitted from housing, much of the most readily available nitrogen will not be transferred to manure storage. If emissions occur in storage, there will be less nitrogen for land application. The current approach ignores these mass balance considerations and simply adds the emissions using emission factors determined separately for each subsystem.

Dividing the total manure nitrogen that leaves the farm by the total nitrogen excreted can identify some potential overestimation of emission factors. For example, using emission factors in Table 8-21 of EPA (2001a) for swine model farms, the total ammonia nitrogen emissions for 500 AUs in Model S2 can be estimated to be 1.12 × 104 kg/yr. (Three significant digits are carried for numerical accuracy from the original reference and may not be representative of the precision of the data.) The total nitrogen excreted by 500 AUs of growing hogs is 1.27 × 104 kg/yr (EPA, 2001a). Thus, one calculates that 90 percent of estimated manure nitrogen is volatilized to ammonia, leaving only 10 percent to be accumulated in sludge, applied to crops, and released as other forms of nitrogen (NO [nitric oxide], N2O [nitrous oxide], and molecular nitrogen [N2]). These emission factors suggest that almost all excreted nitrogen is lost as NH3, which seems unlikely.


Although nitric oxide was not specifically mentioned in the request from the U.S. Environmental Protection Agency (EPA), the committee believes that it should be included in this report because of its close relationship to ammonia. An appreciable fraction of manure nitrogen is converted to NO by microbial action in soils and released into the atmosphere. NO participates in a number of processes important to human health and the environment. The rate of emission has been widely studied but is highly variable, and emissions estimates are uncertain.

Attempts to quantify emissions of NOx from fertilized fields show great variability. Emissions can be estimated from the fraction of the applied fertilizer nitrogen emitted as NOx, but the flux varies strongly with land use and temperature.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement