Appendixes



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 83
Use of Lightweight Materials in 21st Century Army Trucks Appendixes

OCR for page 83
Use of Lightweight Materials in 21st Century Army Trucks This page in the original is blank.

OCR for page 83
Use of Lightweight Materials in 21st Century Army Trucks Appendix A Biographical Sketches of Committee Members Harry A. Lipsitt, Chair, is professor emeritus in the Department of Mechanical and Materials Engineering at Wright State University. He spent 30 years at the Air Force Wright Laboratories working on the development and optimization of metallic and intermetallic materials for use in high-temperature applications. His earlier research included fracture toughness in ceramics; deformation mechanisms in two-phase alloys, and deformation mechanisms in ordered intermetallics. Dr. Lipsitt has published more than 100 technical articles in refereed journals and has served on the editorial review boards of International Metallurgical Reviews and Metallurgical Transactions. Dr. Lipsitt has chaired and served on numerous National Research Council committees and on the National Materials Advisory Board. Rodica A. Baranescu (NAE) is chief engineer of engine performance analysis at the Technical Center, Engine and Foundry Division, International Truck and Engine Corporation. She is responsible for leadership and coordination of research and development activities in low-emission diesel engines for truck applications; simulation and modeling of combustion, emissions, processes, and systems in diesel engines; and the evaluation and development of alternative fuels for heavy-duty engines. Previously, she worked for International Navistar. Dr. Baranescu has authored numerous technical papers on topics such as the performance and emission optimization of diesel engines, assessment of alternative fuels potential for automotive applications, simulation analysis of engine processes, and statistical optimization of engine design. She has been active in SAE (Society of Automotive Engineers) International for the past 20 years, holding positions including president, member of the board of directors, chair of the International Services Committee, and chair of the Chicago section. Dr. Baranescu was made a fellow of SAE in 1999 and in 2001 was elected to the National Academy of Engineering.

OCR for page 83
Use of Lightweight Materials in 21st Century Army Trucks John V. Busch is general manager of Van Custom Millwork, a manufacturer of high-end architectural wood products. His area of expertise is materials economics, specifically the cost modeling of new technologies. Previously, he served as director of business development for Composite Products, which supplies long-fiber-reinforced molded composite components to automotive and office furniture manufacturers. For 13 years, Dr. Busch was president and founder of IBIS Associates, which conducts international management consulting studies for technology-based organizations. At IBIS, he specialized in business development, cost modeling, and technology assessment. Prior to that, he worked as a materials engineer at United Technologies. Dr. Busch has served on the board of directors of Brunswick Technologies, an innovative composites reinforcement supplier, and as a special partner in Ampersand Special Materials Ventures, a venture capital fund for investing in emerging specialty materials and chemicals businesses. He has also served on numerous National Research Council committees and has been a member of the National Materials Advisory Board. Glenn S. Daehn is professor in the Department of Materials Science and Engineering at Ohio State University. His research interests include metal forming processes, mechanical behavior, plasticity, and the design and manufacture of affordable lightweight structures. Dr. Daehn's recent work includes research into improving materials formability via high-velocity sheet metal forming and electromagnetic forming as a means of flexibly producing very high velocity deformation. Dr. Daehn and his research group are working with automotive, aluminum, and aerospace companies and the National Science Foundation to develop this process. He has also worked in the development of new processes for the fabrication of metal matrix composites by novel reactive and powder processing routes. Larry J. Howell retired as executive director for science at the General Motors (GM) Research and Development Center. In this position, he served as chief scientist for GM, overseeing six science laboratories working on thermal and energy systems, electrical and controls integration, materials and processes, enterprise systems, chemical and environmental sciences, and vehicle analysis and dynamics. In addition, Dr. Howell had global

OCR for page 83
Use of Lightweight Materials in 21st Century Army Trucks responsibility for joint research with universities, government agencies, and industrial partners; he also served as secretary to GM’s Corporate Science Advisory Committee, which reports on technology issues to GM’s board of directors. Previously, Dr. Howell served as executive director of body and vehicle integration at GM Research Laboratories. His areas of responsibility included research and development in body engineering and manufacturing, chassis and electrical systems, vehicle integration, and vehicle safety. In this capacity, he was also responsible for the Research and Development Center’s advanced vehicle programs, including the Partnership for a New Generation of Vehicles and the Intelligent Transportation Systems program. Manish Mehta is director of collaboration programs at the National Center for Manufacturing Sciences (NCMS). His responsibilities include assessing technology needs and developing collaborative research and development projects with NCMS’s defense and industrial members for the use of lightweight materials and production processes. In addition, Dr. Mehta is executive director of the Aluminum Metal Matrix Composites Consortium, a supplier group organized and managed by NCMS, and convener of the Steel Joint Industry Alliance of steel-making, forging, heat treating, and end-user industries and trade organizations. Dr. Mehta has developed and managed complex technology demonstrators for collaborative projects sponsored by the Department of Defense, the National Institute of Standards and Technology (NIST), and the Department of Energy. He has been involved in numerous technology assessments of advanced materials and their associated manufacturing technologies, and has worked on strategic planning and commercialization roadmapping for several technologies emerging from projects of NIST’s Advanced Technology Program. Dr. Mehta is active in the Engineering Society of Detroit and has been an organizer of the annual Advanced Composites Conference for several years. He is a member of the Manufacturing Working Group of the United States Council for Automotive Research, and a member of the National Research Council's Board on Manufacturing and Engineering Design. Walter D. Pilkey is Frederick Tracy Morse Professor of Mechanical Engineering at the University of Virginia, where he has worked for 33 years. In addition, he has been the director of the university’s Impact Biomechanics

OCR for page 83
Use of Lightweight Materials in 21st Century Army Trucks Program and a professor in neurosurgery. Dr. Pilkey’s research interests include computational structural mechanics, optimization, and injury biomechanics. His specific research has included developing the methodology to uncouple longitudinal structural analyses from cross-sectional analyses, and investigating technology for determining the limiting performance of mechanical systems subject to impact loading. Previously, Dr. Pilkey assisted in setting up a School of Engineering at Kabul University in Afghanistan and worked at the Illinois Institute of Technology Research Institute (IITRI) in Chicago. Oleg D. Sherby (NAE) is professor emeritus in the Department of Materials Science and Engineering at Stanford University. His research interests include the properties of ultrahigh carbon steels, the history of ancient blacksmiths and Damascus steels, and mechanisms of creep of fine-grained and composite materials at high temperatures. He is the coholder of 8 U.S. patents; the author or coauthor of 340 publications on mechanical behavior, materials processing, and diffusion in materials and metal-laminated composites; the coauthor of a text on superplasticity in metals and ceramics; and the technical editor of two books. He has been granted numerous awards and distinctions during his career, including the following: fellow of ASM International (1970), fellow of the American Institute of Mining and Metallurgical Engineers (1985), honorary member of the Japan Institute of Metals (1996), honorary member of the Iron and Steel Institute of Japan (1999), ASM Gold Medal (1985), Yukawa Silver Medal (1988 and 1999), Albert White Distinguished Teaching Award (1988), Campbell Memorial Lecture Award (1998), Albert Sauveur Achievement Award (2000), Lifetime Achievement Award in Superplasticity (2000) at the International Conference on Superplasticity of Advanced Materials, and the Thermec 2000 Distinguished Award for pioneering work on ultrahigh carbon steels. Dr. Sherby was elected a member of the National Academy of Engineering in 1979.