conditions (AWR 2.31(d)(1)(ix); NRC, 1996). Most implanted devices and their carriers can be disinfected, but it might not be possible for some sensitive or delicate equipment, such as some types of microelectrodes (for further information on this topic see “Animal Care and Use Concerns Associated with Introduction of Probes into Neural Tissue” in Chapter 4). Whenever possible, it is advisable to sterilize or disinfect devices before their insertion into neural tissue. Because a typical neuroscience laboratory contains many other items, such as recording equipment, that cannot be sterilized, the full application of aseptic technique during a prolonged nonsurvival experiment is usually impossible. One approach to that problem is to use appropriate aseptic technique to create and maintain a local sterile field that includes any openings into major body cavities that are made during a prolonged nonsurvival session.

Institutions should develop policies and guidelines to assist investigators in adapting aseptic surgical procedures to the laboratory setting. Topics that should be considered in preparing guidelines include preparation of the laboratory room, with particular attention to the site where surgery and recording will take place (for example, taking into account the relative locations of supply and exhaust ventilation ducts with respect to airborne contamination of the surgical field); preparation of the animal; preparation of the surgeon and any other experimenters who will come into proximity to the animal; instrument preparation; intraoperative monitoring; and training (APHIS/AC Policy 3; NRC, 1996, pp. 78–79). Neuroscientists can assist veterinarians and IACUCs in developing performance-based standards for monitoring the occurrence of deleterious effects by providing postmortem tissue specimens for histopathologic analysis.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement