Cover Image


View/Hide Left Panel

Page 116

do not have to penetrate all the way into markets for S&T data in order to have an effect on the conduct of research and innovation.

What happens if DRM standards do gradually extend into S&T markets, or if they migrate even deeper into the various technical layers of computers and computing networks? Some people who are developing DRM systems have realized that they are relatively easy to circumvent if they are implemented in particular applications or peripheral devices, and that they would be harder to circumvent if embedded in computer operating systems and even harder to circumvent if one could wire them into hardware or embed them in the basic Internet protocol.

More widespread extension of DRM regimes will reshape the ways in which information storage, retrieval, and exchange are handled. Earlier, I raised the question of who will develop search tools that can interact with individual DRM systems. We now can extend this point to network searches more generally. If one needs a license to develop a search engine, what kinds of consequences will that have for the development of innovative search technologies? If archiving and storage become proprietary activities, will the risks of format obsolescence increase? Maybe we do not have enough data to answer these questions. It is certainly a change from the way the development of search tools has worked so far.

If DRM functionality continues to migrate deeper into the computing layer, we also may see decreased penetration of open-source systems simply because it is going to be difficult legally to create the kinds of interoperability that are necessary for open-source systems to attain greater market share. In the pre-DMCA world, if consumers wanted their DVD players or their word processing program to behave in a certain way, the open-source community could do that relatively easily. If members of that community wanted to make it happen, they would. But if the information about how to make these systems interoperate with other components of the computing platform is protected under the DMCA, achieving interoperability will be much more difficult.


It is usually easy to convince academics and researchers that the worst-case potential consequences of a phenomenon are worth studying more closely. Yet the worst-case consequences of DRM regimes and the protection given them under the DMCA are worth more than further study. The culture of scientific research is in some ways extraordinarily robust, but in other ways it is extraordinarily fragile. In particular, it is premised on a series of assumptions about the public domain, and about access to and use and sharing of information, that may soon warrant serious revision. In my view, waiting for these worst-case consequences to materialize would be a terrible mistake.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement