Appendix B
Interdisciplinary Collaboration, Team Functioning, and Patient Safety1

As concern over the number of health care errors has risen, so has interest in the development of care delivery processes that minimize the potential for error. Among the strategies proposed by experts is the creation, training, and support of highly developed interdisciplinary teams and collaborative work groups (Chassin et al., 1998; Disch et al., 2001; Palmersheim, 1999). The desire for effective team performance has been mentioned in the health care literature for years. What has been less evident is what constitutes effective team performance, how it is created and nurtured, and how it directly or indirectly influences care delivery outcomes. These unknown attributes and products of work teams should be explored thoroughly to enable sound recommendations concerning the promotion of interdisciplinary teams and collaborative work groups as a measure for assuring safe patient care.

This appendix is divided into three main sections. The first contains an extensive review of the literature concerning interdisciplinary teams and their impact on care delivery and safety outcomes. Included in the review are summaries of relevant research from health care, industry, and other work groups involved in error-prone and high-risk team behaviors. The second section provides evidence-based recommendations for strategies to develop, train, and assess the performance of interdisciplinary teams. The final section delineates needs for further research.

1  

This appendix was prepared for the committee to inform its deliberations by Gail L. Ingersoll, Ed.D., R.N., F.A.A.N., F.N.A.P., and Madeline Schmitt, Ph.D., R.N., F.A.A.N., F.N.A.P., of the University of Rochester Medical Center.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses Appendix B Interdisciplinary Collaboration, Team Functioning, and Patient Safety1 As concern over the number of health care errors has risen, so has interest in the development of care delivery processes that minimize the potential for error. Among the strategies proposed by experts is the creation, training, and support of highly developed interdisciplinary teams and collaborative work groups (Chassin et al., 1998; Disch et al., 2001; Palmersheim, 1999). The desire for effective team performance has been mentioned in the health care literature for years. What has been less evident is what constitutes effective team performance, how it is created and nurtured, and how it directly or indirectly influences care delivery outcomes. These unknown attributes and products of work teams should be explored thoroughly to enable sound recommendations concerning the promotion of interdisciplinary teams and collaborative work groups as a measure for assuring safe patient care. This appendix is divided into three main sections. The first contains an extensive review of the literature concerning interdisciplinary teams and their impact on care delivery and safety outcomes. Included in the review are summaries of relevant research from health care, industry, and other work groups involved in error-prone and high-risk team behaviors. The second section provides evidence-based recommendations for strategies to develop, train, and assess the performance of interdisciplinary teams. The final section delineates needs for further research. 1   This appendix was prepared for the committee to inform its deliberations by Gail L. Ingersoll, Ed.D., R.N., F.A.A.N., F.N.A.P., and Madeline Schmitt, Ph.D., R.N., F.A.A.N., F.N.A.P., of the University of Rochester Medical Center.

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses TEAMS AND PERFORMANCE OUTCOMES The importance of understanding and maximizing team performance has been discussed by several authors, who note that 70 to 80 percent of health care errors are caused by human factors associated with interpersonal interactions (Schaefer et al., 1994). Others stress the increasing numbers of professionals directly involved in care delivery processes and the relationship between the resulting importance of cooperative working relationships and the complexity of patient needs (Headrick et al., 1998). Addressing this demand is hindered by a number of factors, including the wide variation in team makeup, which ranges from those composed of senior clinicians overseeing residents and fellows (Posner and Freund, 1999) to those involving representatives of multiple professions from multiple organizations (Green and Plesk, 2002; Kosseff and Niemeier, 2001; Stone et al., 2002). Clear differences exist in those situations in which team makeup is driven by hierarchical learning or reporting mechanisms and those in which the team members have equal influence on team performance and outcome. In addition, health professionals interact in a variety of ways, ranging from loosely coordinated collaborative relationships at one end of the continuum to more tightly organized work teams at the other, often within the same day (Headrick et al., 1998). Difficulties also arise when determining whether the failure of a team’s performance is the cause or the result of poor team member behavior. In a study of deteriorating team performance, a back-and-forth pattern developed between member performance and overall team performance as top management teams began to fail (Hambrick and D’Aveni, 1992). Theories of Work Team Effectiveness A number of theories exist concerning the ways in which teams work and how they produce favorable outcomes. Some of the more prominent theories relevant to the discussion of decision making for patient safety and for the creation of desirable care delivery outcomes are reviewed below. Early Theories of Team Behavior Early theoretical efforts to conceptualize the group processes operating in teams drew heavily upon sociological studies of hierarchical differentiation. In these investigations, the social structure of the group was examined for its impact on team communication and problem solving (Feiger and Schmitt, 1979). In summarizing the basic research in this field, Feiger and Schmitt note that status-driven hierarchical processes undermine analysis and problem-solving activities in teams. These same processes may facili-

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses tate coordination and synthesis activities, however. Feiger and Schmitt also examined the relationship between degree of hierarchy and patient outcomes in four teams in a long-term care setting. They found that better outcomes were perfectly rank-correlated with less hierarchy in the interaction patterns of team members. In focusing on other group processes that can undermine the effectiveness of team performance, Heinemann and colleagues (1994a) summarize several sociological theories relevant to group decision making and apply them to geriatric interdisciplinary health care teams. Groupthink (Janis, 1972, 1982)—a process theorized to affect highly cohesive teams in which efforts are made to control the input of information that challenges the team’s thinking—is more likely to occur in situations of high stress where there is pressure to act. The theory was first used to examine the dynamics of what went wrong in political fiascoes, such as the Bay of Pigs invasion of Cuba under the leadership of President Kennedy and the Challenger disaster. In tests of the theory, directive leadership was found to increase the likelihood of groupthink processes. Theories of framing and group polarization have been used to refine ideas developed in groupthink theory. Framing theory focuses on the interpersonal context of decision making, while group polarization theory emphasizes how group discussion exaggerates initial preferences of team members for risk taking or caution. Discussions also have focused on the linkages between the stage of development of group/team cohesiveness and the potential for groupthink behavior (Longley and Pruitt, 1980). In addition, Farrell and colleagues have examined how conditions in geriatric teams may approximate conditions required for groupthink processes and illustrate these processes in a case study description (Farrell et al., 1986, 1988, 2001). They offer the following guidelines for minimizing poor decision making related to these team processes: (1) emphasizing open, honest, and direct communication; (2) facilitating team development, which includes writing a mission statement, formulating goals and procedures for operating, clarifying roles, and orienting new team members; and (3) helping teams identify team processes that predispose to poor decision making, such as overreliance on directive leaders and team isolation. They emphasize the importance of retreats, administrative or process meetings, and acknowledgment of effective work. Group development theory has provided the theoretical context for a number of studies of health care teams (Farrell et al., 1986, 1988, 2001). This theory posits that teams pass through a series of developmental stages prior to reaching their maximum work effectiveness. Few efforts have been made to measure team development and examine factors that influence team development. Consequently, the usefulness of this theory for understanding team safety behavior is uncertain. One study of researcher-designed and/or

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses -adapted measures of team development and team functioning has been conducted. This investigation explored a variety of factors affecting team development and team functioning and the impact of team functioning on team member burnout (Heinemann et al., 1994b). Theories of Team Behavior and Error Sasou and Reason (1999) have created a taxonomy of team errors, which they believe highlights the essential components of error detection in group processes. The dimensions of this taxonomy include (1) a determination of how the team made the error, (2) an appreciation for whether the team recognized the error and corrected it, and (3) an understanding of the human relations that contributed to the error. Sasou and Reason expanded the work of Reason (1990), who categorized human errors into three types—mistakes, lapses, and slips. According to the original conceptualization, mistakes and lapses arise in the planning and thinking process, whereas slips occur primarily in the execution phase. Mistakes and lapses are more likely to occur during team processes, whereas slips are caused primarily by individuals (Sasou and Reason, 1999). Team errors consist of an error-making process and an error-recovery process. In the error-making process, errors occur as a result of individual or shared decision making. Individual errors are subdivided into independent and dependent errors according to the extent of information available during the decision-making process. Independent errors occur when the information available to the individual team member is correct; dependent errors occur when some part of the information is incomplete, absent, or incorrect. Shared errors are errors shared by some or all of the team members, regardless of whether they were in direct communication with the individual initiating the error. Shared errors are likewise subdivided into independent or dependent according to the amount and accuracy of the information available (Sasou and Reason, 1999). The error-recovery process includes three stages—detection, indication, and correction (Sasou and Reason, 1999). The initial stage, detection, is followed by the indication phase, in which an identified error is brought to the attention of the group. If this fails to occur, the error is not fully recovered, and actions taken to correct the error are not likely to work. The final stage involves actual correction of the error. Sasou and Reason (1999) have applied this taxonomy to 21 error events occurring in the nuclear industry, 21 events in the aviation industry, and 25 events in the shipping industry. Human factors reports were used to identify 28 team errors in nuclear industry events, 8 in aviation industry events, and 9 in shipping industry events. The findings suggest that individual er-

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses rors occur more frequently than shared errors and that failures to detect errors occur more often than failures to indicate or correct. In this same study, the investigators identify internal and external factors that contribute to the errors made. They define these contributors as performance-shaping factors (PSFs), which include external factors such as darkness, temperature, and high work requirements that are shared by all team members working in the same environment. Internal PSFs include high stress, excessive fatigue, and deficiencies in knowledge and skill. According to Sasou and Reason (1999), internal PSFs are often influenced by external factors and may vary across individuals even under the same set of circumstances. Team PSFs are a third potential contributor to error. These include, for example, lack of communication, inappropriate task allocation, and excessive authority gradient (Sasou and Reason, 1999). In their review of adverse events in the nuclear, aviation, and shipping industries, Sasou and Reason (1999) found the most common team PSF to be failure to communicate. Failure to communicate resulted in the inability to detect both individual and shared errors. Excessive professional courtesy, overtrusting, an air of confidence, and excessive belief were additional factors. Inadequate resources and deficient task management created errors and also led to detection failures. Excessive authority gradient was the most dominant factor in failures to indicate and correct errors, although excessive professional courtesy also led to team member reluctance to challenge error makers. Shared errors commonly occurred during the human–machine interface, where low task awareness, low situational awareness, and excessive adherence to overreliance on established practices contributed to mistakes. Failures to detect were influenced by deficiencies in communication and resource/task management, excessive authority gradient, and excessive belief. Failures to indicate/correct were influenced by excessive authority gradient, excessive professional courtesy, and deficiency in resource/task management. Based on these findings, the authors recommend that team error-reduction strategies focus on clarifying team member responsibility and accountability and on improving interpersonal skills performance. This includes efforts both to maximize communication success and to provide constructive feedback to established and well-respected team members. A second theory of team behavior and safety processes proposes that four boundaries of safe or acceptable practice are evident in systems—physical, psychological, social, and economic (Bea, 1998). Individuals within systems function within a “safety space” created by these four boundaries and take action to withdraw when they perceive they are approaching one of the unsafe areas. In this model, the physical boundary reflects conditions in which the work or effort required is perceived to be

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses excessive. When approaching this boundary, employees develop work shortcuts to reduce the perceived threat. The psychological boundary represents conditions in which mental effort, stress, or anguish is unacceptable. Safety protection behaviors when approaching this boundary include withdrawal and aggressive action. The social boundary clarifies the limits of acceptable group norms and behavior and may include legal or corporate expectations for performance. The economic boundary indicates where economic viability or security is threatened and when approached often leads to cost-cutting measures. Strategies to keep teams and organizations functioning within the safety zone created by these boundaries involve designing robust structures that include attention to (1) redundancy, in which alternate paths are available to carry demands; (2) ductility, in which components are able to deform without failing and to shift demands to other paths when necessary; and (3) excess capacity, in which components are designed to carry demands beyond those normally expected. Full integration of these fail-safe measures requires the development of cohesive work teams that emphasize integrity, trust, and cooperation (Bea, 1998). Necessary also are sufficient training of members who have direct influence over the system’s safety; the development of positive economic and psychological incentives that promote safety behaviors; the development of effective internal and external checking and verification procedures; and standards of performance, including procedures for disciplinary action when rules are breached and the introduction of methods to promote early identification of and response to emerging risks. According to this model, three approaches can be used to maximize consistent practice within teams and return to safe systems. The first is a reactive approach, which results in analysis of the failure or failures of the system. This process focuses on understanding the reasons for failure and how to avoid it in the future. Most commonly, the process results in the development of safety guidelines, procedures, and rules for performance (Bea, 1998). The proactive approach works to analyze the system before it fails and to put into place measures that prevent the anticipated failure. One of the difficulties with this approach is its focus, which directs attention to what may go wrong rather than what is working right. For this reason, Bea adds a third approach, which he believes needs further development and exploration. This real-time approach stresses the responses that occur during a crisis when a buildup of danger signals requires immediate action to return the system to its normal state. The real-time approach recognizes those situations in which the sequence of events or the novelty of the situation is unpredictable and different from previous experiences. In this scenario, employees are provided with enhanced abilities to rescue themselves from the threatening event and to return the system to its usual safe state. Training, including the use of simulation techniques, is the most use-

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses ful approach for developing these skills. Ideally, the training should address the three cognitive processes that govern how well people respond during a crisis: (1) overall knowledge of background information and related conditions; (2) attention dynamics, or the control and management of mental workload, maintenance of situation awareness, and avoidance of fixations; and (3) strategy development, which includes considering trade-offs between conflicting goals, dealing with uncertainty and ambiguity, setting effective priorities, and making good decisions (Bea, 1998). A third team- and safety-related theory focuses on team effectiveness, including the ability to avoid or minimize the potential for error. In this model, team effectiveness is measured by the team’s ability to solicit and value differences in team members’ assumptions and world views (Korsgaard et al., 1995). Even in the best of circumstances, however, team members may become disengaged from the team if they believe the action taken by the team differs from their personal view. For this reason, reviews of effective team decision making should consider both the quality of the decision and the impact of the decision-making process on team members’ commitment to the decision, their continued attachment to the team, and their trust in the team leader. These latter three dimensions serve as antecedents to cooperation among team members, which is essential to the ultimate support for and action on a decision made. One approach to determining the potential level of team member support for a team decision is consideration of a team member’s perceived level of procedural justice during the decision-making process. The tenets of procedural justice suggest that fair treatment is central to all humans and is a major determinant of their reaction to how decisions are made and executed (Korsgaard et al., 1995). The concept is focused in particular on the meaning of involvement in the decision-making process and less so on the individual’s ultimate control over the decision outcome. Perceptions of fairness are influenced by the extent to which team members show consideration for the input of other team members and the extent to which individual members’ input affects or is reflected in the final decision. In the case of health care teams designed according to hierarchical reporting determiners, procedural justice is influenced considerably by the senior members of the team. If the senior members routinely seek and incorporate junior members’ opinions in decision making, junior members are more likely to perceive the team process as just and supportable. If, on the other hand, junior team members perceive the process as unjust, they are much less likely to cooperate with or support any decisions made. They also are far more likely to disengage from the group and to minimize the potential benefit of the group process for patient safety decisions. This theory of team effectiveness and the impact of team leader consideration and responsiveness was tested in a study of intact teams of middle-

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses and upper-level managers of a Fortune 500 company (Korsgaard et al., 1995). In this study, decisions made in teams with high levels of consideration behavior by leaders were perceived by team members as much more fair than decisions in low-consideration groups. Members of high-consideration groups also were significantly more committed to the decisions made, especially when their level of influence was low. In addition, high-consideration group members increased their commitment to the team over time, while low-consideration group members disengaged. Member influence in decision making had the most dramatic effect, with the quality of decisions made in high-influence groups being significantly greater than that of decisions made in low-influence groups. A comparable effect on decision quality was not seen for level of leader consideration. Organizational Behavior and Team Performance More recent theories have been proposed concerning the ways in which organizations and work groups successfully reduce the potential for error. Some of these theories center on high-reliability organizations, defined as organizations that operate relatively free of error for long periods of time, frequently in hazardous environments (Bea, 1998; Gaba, 2000). High-reliability organizations view safety as the top functional objective for the organization (Gaba, 2000). They have extensive process auditing procedures to assist in the identification of safety problems and have well-established reward systems that reinforce error-reduction behaviors (Bea, 1998). High-reliability organizations focus their error-reduction activities at the systems level and incorporate rehearsals of familiar scenarios of failure. They also recognize the likelihood of human error and attempt to train their workforce to recognize and recover from such error (Reason, 2000). According to Gaba (2000), health care institutions have viewed safety as a by-product of non-negligent care rather than a goal to be achieved. This world view differs from that of high-reliability organizations, in which safety is the focus of all actions. Altering this view has been difficult, especially in light of the problems associated with planning for and measuring the impact of accidents that do not occur (as a result of the focus on error-free outcomes). Gaba suggests that health care’s decentralized system contributes to the proliferation of error. Individual practices and the reluctance to consolidate care delivery processes have led to highly variable performance patterns and the likelihood of negative events. Even in those cases in which health care organizations have joined larger health services systems, the focus on these collaborations has been on business operations and cost savings, not safe practices. Shifting this focus to coincide with the expectations of high-reliability organizations will be difficult.

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses An application of high-reliability theory has been described for and tested in organizations requiring nearly error-free operations to prevent the occurrence of catastrophes (Weick and Roberts, 1993). In this model, high-reliability organizations engage in aggregate mental processes that are more fully developed than those evident in organizations concerned with process efficiency. Weick and Roberts have tested this model with flight team members whose interactions with others are coordinated in explicit and visible ways and whose socialization is continual. In addition, when working alone, these workers have less of a grasp of the system than when working together. In this situation, the system is constructed of interdependent worker abilities and of individuals who react quickly to novel and rapidly occurring situations. Furthermore, the consequences of any lapse of team member attention are rapid and disastrous. In this model, the collective mind of group members is a reflection of overlapping knowledge and actions that are taken with care, rather than any within-group similarity of attitudes (Weick and Roberts, 1993). Weick and Roberts define the actions taken with care as heedful actions—actions that are critical, consistent, purposeful, attentive, and vigilant. Heedful performance denotes continuous learning that is modified by previous performance. The more heedful the interactions among team members, the more developed is the team’s collective mind and the greater is the team’s ability to comprehend and respond to unexpected events that evolve quickly in unanticipated ways. When heedful actions are spread across more activities and more connections, group understanding is increased, and the potential for errors is reduced. Weick and Roberts (1993) suggest that when heedful behaviors are visible, rewarded, modeled, and discussed, new team members learn this style of responding. The new team members subsequently incorporate these behaviors into the definitions of who they are in the system and reaffirm this style in their actions. Collective mind is renewed and reaffirmed during the socialization of new team members and is maximized when senior team members describe and review representative failures as well as successes. The style of senior member interactions also contributes to the development of heedful behaviors by new team members. If those interactions are poor, heedful behavior may suffer, resulting in errors in communication or action by new members. In addition, attention may be focused on individual actions or needs rather than group actions. If this process continues over time, small, individual errors can grow to large-scale group error. Weick and Roberts suggest that this process has important implications for team development strategies in which training may be focused exclusively on content rather than heedful behaviors. They also recommend that training programs include attention to the social processes and dynamics of the work group.

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses An additional theory of organizational behavior relevant to team interactions and patient safety is the microsystem concept described by Nelson and colleagues (2002). According to this model, the health system is composed of a front-line clinical microsystem, an overarching macrosystem, and patient subpopulations needing care. Two assumptions of this framework are that the microsystems produce the quality, safety, and cost outcomes associated with delivery of services and that the outcomes of the macrosystem can be no better than the microsystems of which it is composed. To bring about the changes needed to reduce errors in health care, fundamental changes need to occur at all levels of the system. In addition, efforts need to be made to optimize each individual microsystem and to establish seamless, timely, reliable, and efficient linkages among clinical microsystems. According to Nelson and colleagues, one of the benefits of this conceptual approach is its attention to the front-line component of service delivery. Health care microsystems evolve over time and conduct the primary work associated with the core aims of the organization. They are composed of a small group of people who work together on a regular basis to provide care to a discrete subpopulation of patients (Nelson et al., 2002). In this framework, clinical microsystems are the essential building blocks of the health system and as such contribute significantly to the outcomes seen. They are tightly or loosely connected with one another and perform better or worse under different operating conditions. This microsystem model was tested by Nelson and colleagues (2002) through the use of a qualitative design consisting of observation, interview, review of documents, and analysis of financial data. In this study, 20 high-performing clinical microsystems were identified through a review of lists of award winners, literature citations, previous research findings, expert opinion, and nominations from leaders of exemplary organizations. A structured screening interview and questionnaire were used to select 20 microsystems from an initial 75 sites. The investigators identified a set of nine success characteristics evident across all sites that led to highly favorable systemic outcomes: the leadership of the microsystem, the culture of the microsystem, the macro-organizational support of the microsystem, a focus on patients, a focus on staff, interdependence of care teams, the availability and use of information and information technology, a focus on process improvement, and an outstanding performance pattern (Nelson et al., 2002). An emphasis on patient safety, health professional education, and awareness of the impact of the external environment also were evident at these institutions. Nelson and colleagues (2002) believe that the critical role of these naturally occurring microsystems has been ignored in previous efforts to reduce health system errors. They suggest that attention has been directed instead

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses at clinicians, consumers, and others, thereby ignoring the essential building blocks of the health care system. They recommend pushing the decision making, process ownership, and accountability expectations out to the microsystems where the greatest potential for impact lies. This micro- and macrosystem model can be linked to earlier work on “teams” and their role in health care delivery conducted by Schmitt (1991). Schmitt sorts the interdisciplinary health team literature into three different levels according to the extent of linkage between the microsystem and the macrosystem of the health care institution: (1) the functioning team as a small work group, which usually is defined as three or more members representing different disciplines who share responsibility for an integrated plan of care for a specific cohort of patients over time; (2) the unit-level microsystem, in which the mix of staff involved with patients varies from patient to patient; and (3) institutional policies and procedures that support either the small work group or unit-based care delivery process. The impact of team approaches on patient outcomes, including safety outcomes, potentially can be studied from any of these perspectives. This shift in conceptualization is further described by Schmitt (2001), who introduces the ideas behind “team” as the second and third levels of relationship falling between microsystem and macrosystem. The basic shift in thinking in this approach is its focus on the concept of collaboration in the delivery of care among diverse health professions. Collaboration, which has been defined as “cooperatively working together, sharing responsibility for solving problems and making decisions to formulate and carry out plans for patient care” (Baggs and Schmitt, 1988:145), incorporates efforts to coordinate care. Interdisciplinary teams can be viewed as one specific form of collaboration that is relevant to certain situational circumstances of health care delivery. Questions can then be raised about other forms of collaboration between disciplines and the effects of that collaboration on care delivery outcome. Examples of studies that fit into this refined framework include a study of differences in mortality outcomes in intensive care units (ICUs) in 13 U.S. hospitals. After performing risk adjustment for differences in patient severity of illness and ruling out several other potential explanations, Knaus and colleagues (1986) argue that the greater presence of interdisciplinary interaction and coordination of care among staff contributed to the differences seen. Included in their discussion of potential contributors to favorable care provider relationships is the availability of policies and procedures (e.g., joint care rounds) that support coordination and collaboration in care, which they suggest accounts for the lower mortality rates seen in some units. The identification of these differences in the care delivery process was retrospective, however, making the assurance of cause–effect relationships uncertain. In a second, prospective study of 42 randomly chosen ICUs

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses intelligent decision aids (IDAs) must be able to promote both high-level decision making under uncertainty and the ability to develop strategies for planning for and preventing stressful events (Kontogiannis and Kossiavelou, 1999). The most successful IDAs for team training purposes are those that mimic usual event escalation processes and contributors, including imagined action consequences, anticipation of rare events, and prioritization of tasks when time is limited. IDAs also can be used to provide information about an event or situation, to present multiple perspectives about potential contributors and possible outcomes, and to monitor task performance. In addition, they have potential relevance for facilitating contingency planning through the use of information displays concerning difficulties encountered in the past, critical errors associated with similar actions, and resources needed to activate the plan. Because the use of IDAs for assistance with decision making in highly stressful conditions is new, experiments and field evaluations of their effectiveness must be an integral part of their use (Kontogiannis and Kossiavelou, 1999). Methods for Measuring the Safe Care Delivery Practices of Work Teams and Collaborative Groups Reports on methods for monitoring team processes are few, with most evaluations of team performance focusing primarily on clinical outcomes rather than error or error avoidance. Although favorable outcomes are commonly interpreted as an indication of the absence of error, this assumption needs to be documented more clearly. Moreover, because the development and maintenance of effective teams are essential to safe care delivery processes and ideal outcomes, efforts need to be made to monitor and describe those collaborative groups and work teams that consistently produce safe care. Identifying teams and organizations as benchmarks for outcomes is insufficient; understanding and mimicking their processes also is required. Strategies for evaluating team performance range from day-to-day quality assessment processes to formal investigations of team impact. Inherent in all discussions of the impact of interdisciplinary teams on patient safety and other care delivery outcomes, however, is the need for continuous assessment of team performance and impact. This continuous process is highlighted in a model of collaboration described by Sorine and colleagues (1996), who identify five essential components of the collaboration cycle, each requiring close monitoring of process and outcome. In Sorine et al.’s model, performance guidelines drive compliance agreements, which in turn influence preparedness training and implementation procedures. Once the procedures have been implemented, verification and improvement efforts are undertaken to ensure the quality and consistency of behaviors. These

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses actions subsequently spur the refinement or revision of performance guidelines. This process is continuous, resulting in improvements in team performance and care delivery outcomes over time. Using this model, the evaluation of performance guidelines might focus on whether they are evidence-based or reflective of documented best practices. Their scope, reasonableness, and usefulness for guiding the formulation of compliance agreements also might be assessed. Compliance agreements and subsequent preparedness components would require evaluation of the achievement of compliance expectations and the effectiveness of training. The implementation process aspects of the evaluation would focus on whether the collaborative model had been introduced as intended and how it evolved over time, while the verification and improvement practices would constitute the ongoing quality improvement monitoring associated with ensuring compliance and achieving safe practices. One method for assessment of safe and unsafe practices recommended by a non–health-related (aviation) industry entails observational audits of pilots and flight crews (Croft, 2001). In this process, termed a line operations safety audit (LOSA), specially trained observers ride in the airplane’s cockpit and observe the responses of the airplane’s pilots to such inflight threats as severe weather or congested airports. The observers also interview the pilots during and after the observational period. Reports of the observations made and summaries of the pilot interviews are entered into a database where trends are identified and reported back to participating airlines. No identifying information is included with the data to ensure that individual pilots are not penalized for identified deficiencies as a result of the observational monitoring (Croft, 2001). The focus of the experience is on monitoring and managing the industry’s overall training and safety program rather than on the individual pilot’s performance. Observers are trained to monitor for five types of error—procedural, communications, proficiency, decision, and intentional. Errors are categorized as consequential when the pilot’s action puts the aircraft in an undesired state and inconsequential when safety is not adversely affected (Croft, 2001). In a review of observations conducted to date, observers have noted one threat to flight safety on 8 of every 10 flights and at least one error on every 6 of 10. These errors resulted in one undesired aircraft state in 3 of the 10 flights. Of importance in this observational process is the failure of pilots to detect over half of the errors made. In addition, when the pilots did catch an error, 1 of 20 (5 percent) was mismanaged. In the majority of cases, errors that compromised safety were caused by the pilot’s lack of knowledge concerning the airplane’s automation features. The LOSA process is a lengthy and expensive one, incurring costs associated with observation of pilot performance, interview, and entry and analysis of data. Each audit requires approximately 3 months and is funded

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses by the participating airline and grants from the Federal Aviation Administration (Croft, 2001). At the time of the report on the LOSA process, data from 13 airlines had been obtained, and audit developers were anticipating a 2-year time frame for determining program effects. Application of this approach to health care would require careful consideration of the costs involved and the possibility of obtaining comparable information through other methods. NEEDS FOR FURTHER RESEARCH Health professionals interact with others in multiple ways and often under the most challenging of situations. As a result, opportunities exist for promoting beneficial impacts on the delivery of health care through the partnering of professionals involved in care delivery. These partnerships may occur between two persons (e.g., patient and practitioner, nurse and physician, pharmacist and care provider) or through the linking of representatives from multiple disciplines. In all cases, a clear pattern of performance and supportive practices emerges as essential to the success of these relationships. Nonetheless, the need for increased attention to and understanding of effective team processes is evident. Although some investigators have begun to explore the mechanics and makeup of teams and how these factors contribute to care delivery outcomes, additional work is needed. Team processes, as defined by Marks and colleagues (2001:356), consist of “members’ interdependent acts that convert inputs into outputs through cognitive, verbal, and behavioral activities directed toward organizing taskwork to achieve collective goals.” According to Marks et al., taskwork involves what the team is doing, whereas teamwork describes how they do it. Taskwork is dependent primarily on skill and member competence; teamwork requires higher-level behaviors, including the ability to direct, align, communicate, negotiate, and monitor taskwork. Marks and colleagues (2001) stress the need to focus research and team development strategies on the interaction processes evident in teams. They suggest that previous research devoted to team cohesion and situational awareness, for example, has tapped qualities that reflect member attitudes, values, and motivation rather than interaction processes per se. They also describe these variables as emergent products of team experience. Using this framework, Marks and colleagues suggest these variables are indicators of team input that influence teamwork processes and taskwork. As a result, their use in the assessment of how team behavior influences care delivery outcomes and safety behaviors is limited. According to Marks and colleagues attention needs to be shifted to team performance episodes, where inputs, actions, and outcomes occur in a continuous, dynamic process. Inherent in

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses this focus on performance episodes is attention to environmental and other influences that contribute to team processes at different points in time. Team process dimensions include monitoring behaviors directed toward the assessment of goal achievement and feedback about that process. This monitoring activity identifies when goals have been achieved or abandoned and when new goals are needed for action. The monitoring activities undertaken by team members include the assessment of team resources and environmental conditions that contribute to goal achievement. Effective teams monitor internal and external factors that contribute to the team’s ability to perform its task. The internal monitoring process may be devoted to the assessment of team members’ performance errors and the development of strategies for eliminating or recovering from those errors. Team process behaviors also involve coordination activities, interpersonal processes, conflict management actions, motivating and confidence-building efforts, and regulation of team members’ emotions (Marks et al., 2001). Marks and colleagues (2001) framework of team processes and outcomes stresses the multidimensional and constantly changing nature of teamwork behavior. This constant movement of teams from periods of transition between existing and new goals makes the measurement of team performance difficult, especially if single one-shot assessments are performed. In cases in which an organization’s safety outcomes are of interest, multiple measures and multiple assessment time frames are needed. A variety of other explorations of team functioning and impacts on patient safety also are required. Among the areas of need identified in the literature are studies exploring the impact of stress (Sexton et al., 2000) and organizational culture on teamwork error and the role of the leader in facilitating or structuring team interaction. This aspect is particularly important in investigations of the relationships between team performance and error identification and reporting, where leader behavior may influence team members’ beliefs about the consequences of and ability to discuss mistakes (Edmondson, 1996). When previous experiences with the reporting of errors are seen as nonthreatening, team members not only detect and report more errors, but also intervene more effectively to recover from errors and prevent serious adverse events. The application and conduct of focused investigations concerning the use of CRM principles and other non–health-related strategies for error reduction are needed. Early reports of the effectiveness of these strategies are encouraging, but additional work is required. The environments in which health care is delivered are often more diverse and variable than those of other fields, and the makeup of the teams involved is clearly different as well. Moreover, applications to the health care environment should focus on team processes that incorporate the full range of individuals likely to be involved in clinical decision making and action.

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses Funding is needed to support these research initiatives and the education and training that will be required to build and sustain the teams and organizational environments necessary to achieve high-quality care delivery outcomes. Legislation and regulations alone will not affect the high-level processes required to promote and create safety cultures in health care organizations. The cognitive, decision-making, and behavioral skills required for successful team membership will need to be addressed during early educational experiences and continue throughout the team member’s work life. Incentives also will be required to ensure that individuals and organizations move toward this new health care production framework. In general, the literature suggests the following areas are ripe for exploration and action in health care. Theory-Testing Research The literature to date suggests that the research concerning the relationships between work groups and safety outcomes would benefit from the testing of existing or evolving theories concerning work group relationships and work group safety. Several theories have been proposed, yet few have been tested in any sustained or evolutionary way. Although more recent studies demonstrate increased attention to theory-derived measures and hypothesized relationships, additional work is needed. Collaboration, Communication, and Other Interpersonal Relationship Behaviors Some evidence suggests and several authors recommend a broader focus on interpersonal interactions rather than team creation alone. These authors suggest that it is the interpersonal dynamics within team processes that contribute to favorable outcomes and reduced production error. They also stress the multiple ways in which health care workers interact in dyads, small groups, and unit-based teams. A focus on the characteristics of the interpersonal behaviors that facilitate effective interaction, decision making, and error-prevention performance may be more useful than a restricted focus on team behavior. Such a focus also may make the measurement aspects of assessing multidimensional team performance more manageable. Patient Management and Oversight Responsibilities Consistent with a focus on collaboration, communication, and interpersonal relationships is attention to the most effective patient management and care delivery approaches for reducing patient error. One of the difficulties apparent in the literature is the significant number of individuals in-

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses volved directly or indirectly in decision making concerning patients’ needs. Some limited evidence suggests that the use of case managers may be beneficial for facilitating desirable care delivery outcomes. Much of this beneficial impact is perceived to be related to the communication and collaboration skills of these individuals and the case manager’s ability to overcome systems barriers. Additional information is needed to clarify the impact of models of care delivery on patient safety outcomes. Application of Non–Health Care Industry Training Standards The literature concerning the effectiveness of safety-focused work group strategies in non–health care industries suggests this may be a useful vehicle for health care. At present, the research concerning these processes (both outside and within health care) is limited, necessitating cautious movement to this field of training, decision making, and error-prevention behavior. Some efforts have been made to introduce these team development and training strategies in health care, although such efforts have not been widespread. Additional information is needed concerning how these methods work with diverse work groups and less intense environments. CONCLUSION The evidence to date reinforces the need to identify what interpersonal and group interaction processes contribute to the delivery of safe care. A number of theories exist concerning how teams perform and how their behaviors contribute to safe or unsafe practices. Clearly evident is the need for additional information about which of these theories is most applicable to the delivery of quality health care and which approaches in health care and other industries demonstrate the most potential for favorable effect. In this paper, the current evidence concerning work groups and patient safety has been reviewed, with recommendations made for future action. REFERENCES Aarons RN. 2002. Targeting failures: Human and structural new training recommendations from the Aspen tragedy, and an update on American Airlines Flight 587. Business & Commercial Aviation, 91(3), 154. Baggs JG, Schmitt MH. 1988. Collaboration between nurses and physicians. Image: Journal of Nursing Scholarship, 20, 145–149. Baggs JG, Schmitt MH. 1997. Nurses’ and resident physicians’ physicians’ perceptions of the process of collaboration in a MICU. Research in Nursing & Health, 20, 71–80. Baggs JG, Ryan SA, Phelps CE, Richeson, JF, Johnson JE. 1992. The association between interdisciplinary collaboration and patient outcomes in medical intensive care. Heart & Lung, 21, 18–24.

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses Baggs JG, Schmitt MJ, Mushlin AI, Mitchell PH, Eldredge DH, Oakes D, Hutson AD. 1999. Association between nurse–physician collaboration and patient outcomes in three intensive care units. Critical Care Medicine, 27, 1991–1998. Banker RD, Field JM, Schroeder RG, Sinha KK. 1996. Impact of work teams on manufacturing performance: A longitudinal field study. Academy of Management Journal, 39, 867–890. Barnsteiner JH, Madigan C, Spray TL. 2001. Instituting a disruptive conduct policy for medical staff. AACN Clinical Issues, 12, 378–382. Bates DW, Leape LL, Cullen DJ, Laird N, Petersen LA, Teich JM, Burdick E, Hickey M, Kleefield S, Shea B, Vander Vilet M, Seger DL. 1998. Effect of computerized physician order entry and a team intervention on prevention of serious medical errors. Journal of American Medical Association, 280, 1311–1316. Bea RG. 1998. Human and organization factors: Engineering operating safety into offshore structures. Reliability Engineering and System Safety, 61, 109–126. Bishop JW, Scott KD, Burroughs SM. 2000. Support, commitment, and employee outcomes in a team environment. Journal of Management, 26, 1113–1132. Chassin MR, Galvin RW, National Roundtable on Health Care Quality. 1998. The urgent need to improve health care quality. Journal of American Medical Association, 280, 1000–1005. Cohen HJ, Feussner JR, Weinberger M, Carnes M, Hamdy RC, Hsieh F, Phibbs C, Courtney D, Lyles KW, May C, McMurtry C, Pennypacker L, Smith DM, Ainslie N, Hornick T, Brodkin K, Lavori P. 2002. A controlled trial of inpatient and outpatient geriatric evaluation and management. The New England Journal of Medicine, 346, 905–912. Cohen SG, Ledford GE. 1994. The effectiveness of self-management teams: A quasi-experiment. Human Relations, 47, 13–43. Croft J. 2001. Researchers perfect new ways to monitor pilot performance. Aviation Week & Space Technology, 155(3), 76–77. Curley C, McEachern JE, Speroff T. 1998. A firm trial of interdisciplinary rounds on the inpatient medical wards: An intervention designed using continuous quality improvement. Medical Care, 36, AS4–AS12. Disch J, Beilman G, Ingbar D. 2001. Medical directors as partners in creating healthy work environments. AACN Clinical Issues, 12, 366–377. Edmondson AC. 1996. Learning from mistakes is easier said than done: Group and organizational influences on the detection and correction of human error. Journal of Applied Behavioral Science, 32, 5–28. Farrell MP, Heinemann GD, Schmitt MH. 1986. Informal roles, rituals and humor in interdisciplinary health care teams: Their relation to stages of group development. International Journal of Small Group Research, 2(2), 143–162. Farrell MP, Schmitt MH, Heinemann GD. 1988. Organizational environments of interdisciplinary health care teams: Impact on team development and implications for consultation. International Journal of Small Group Research, 4(1), 31–54. Farrell M, Schmitt M, Heinemann GD. 2001. Informal roles and the stages of interdisciplinary team development. Journal of Interprofessional Care, 15, 281–293. Feiger SM, Schmitt MH. 1979. Collegiality in interdisciplinary health teams: Its measurement and its effects. Social Science & Medicine, 13A, 217–229. Gaba DM. 2000. Structural and organizational issues in patient safety: A comparison of health care to other high-hazard industries. California Management Review, 43, 83–102. Gaba DM, Howard SK, Flanagan B, Smith BE, Fish KJ, Botney R. 1998. Assessment of clinical performance during simulated crises using both technical and behavioral ratings. Anesthesiology, 89, 8–18.

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses George F. 2002. Transitioning to a two-crew cockpit: Two heads are (almost) always better than one, but those new to shared responsibilities have to work for the benefits. Business & Commercial Aviation, 91(1), 64–70. Gittell J, Fairfield K, Bierbaum B, Head W, Jackson R, Kelly M, Laskin R, Lipson S, Siliski J, Thornhill T, Zuckerman J. 2000. Impact of relational coordination on quality of care, postoperative pain and functioning, and length of stay. Medical Care, 38(8), 807–819. Green PL, Plesk PE. 2002. Coaching and leadership for the diffusion of innovation in health care: A different type of multi-organization improvement collaborative. Joint Commission Journal on Quality Improvement, 28, 55–71. Halstead LS. 1976. Team care in chronic illness: A critical review of the literature of the past 25 years. Archives of Physical Medicine and Rehabilitation, 57, 507–511. Hambrick DC, D’Aveni RA. 1992. Top team deterioration as part of the downward spiral of large corporate bankruptcies. Management Science, 38, 1445–1466. Headrick LA, Wilcock PM, Batalden PB. 1998. Continuing medical education: Interprofessional working and continuing medical education. British Medical Journal, 316, 771–774. Hechanova-Alampay R, Beehr TA. 2001. Empowerment, span of control, and safety performance in work teams after workforce reduction. Journal of Occupational Health Psychology, 6, 275–282. Heinemann GD, Farrell MP Schmitt MH. 1994a. Groupthink theory and research: Implications for decision-making in geriatric health care teams. Educational Gerontology, 20, 71–85. Heinemann GD, Schmitt MH, Farrell MP. 1994b. The quality of geriatric team functioning: Model and methodology. Interdisciplinary Health Care Teams. Proceedings of the Sixteenth Annual Conference. Indianapolis, IN: Indiana University Medical Center. Pp. 77-91. Helmreich RL. 2000. On error management: Lessons from aviation. British Medical Journal, 320, 781–785. Helmreich RL, Davies JM. 1997. Editorial: Anaesthetic simulation and lessons to be learned from aviation. Canadian Journal of Anaesthesia, 44, 907–912. Higgins LW. 1999. Nurses’ perceptions of collaborative nurse–physician transfer decision making as a predictor of patient outcomes in a medical intensive care unit. Journal of Advanced Nursing, 29, 1434–1443. Ingersoll GL. 1996. Organizational redesign: Effect on institutional and consumer outcomes. In: JJ Fitzpatrick & J. Norbeck (eds.) Annual Review of Nursing Research (Vol. 14). New York, NY: Springer Publishing Company. Pp. 121–143. Ingersoll GL, Schultz AW, Hoffart N, Ryan SA. 1996. The effect of a professional practice model on staff nurse perception of work groups and nurse leaders. Journal of Nursing Administration, 26(5), 52–60. Ingersoll GL, Kirsch JC, Merk SE, Lightfoot J. 2000. Relationship of organizational culture and readiness for change to employee commitment to the organization. Journal of Nursing Administration, 30(1), 11–20. Ingersoll GL, Olsan T, Drew-Cates J, DeVinney BC, Davies J. 2002. Nurses’ job satisfaction, organizational commitment, and career intent. Journal of Nursing Administration, 32, 250–263. Janis IL. 1972. Victims of Groupthink: A Psychological Study of Foreign-Policy Decisions and Fiascoes. Boston, MA: Houghton Mifflin. Janis IL. 1982. Groupthink (2nd Edition). Boston, MA: Houghton Mifflin. Jitapunkul S, Nuchprayoon C, Aksaranugraha S, Chalwanichsiri D, Leenawat B, Kotepong W. 1995. A controlled trial of multidisciplinary team approach in the general medical

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses wards of Culalongkorn Hospital. Journal of Medical Association of Thailand, 78, 618–623. Kaminski M. 2001. Unintended consequences: Organizational practices and their impact on workplace safety and productivity. Journal of Occupational Health Psychology, 6, 127–138. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. 1986. An evaluation of outcome from intensive care in major medical centers. Annals of Internal Medicine, 104, 410–418. Kontogiannis T, Kossiavelou Z. 1999. Stress and team performance: Principles and challenges for intelligent decision aids. Safety Science, 33, 103–128. Korsgaard MA, Schweiger DM, Sapienza HJ. 1995. Building commitment, attachment, and trust in strategic decision-making teams: The role of procedural justice. Academy of Management Journal, 38, 60–84. Kosnik LK. 2002. The new paradigm of crew resource management: Just what is needed to reengage the stalled collaborative movement? Joint Commission Journal on Quality Improvement, 28, 235–241. Kosseff A L, Niemeier S. 2001. SSM health care clinical collaboratives: Improving the value of patient care in a health care system. Joint Commission Journal on Quality Improvement, 27, 5–19. Landsbergis PA, Cahill J, Schnall P. 1999. The impact of lean production and related new systems of work organization on worker health. Journal of Occupational Health Psychology, 4, 108–130. Larson EB. 1999. The impact of physician–nurse interaction on patient care. Holistic Nursing Practice, 13(2):38–46. Leape LL, Cullen DJ, Clapp MD, Burdick E, Demonaco HJ, Erickson JI, Bates DW. 1999. Pharmacist participation on physician rounds and adverse drug events in the intensive care unit. Journal of the American Medical Association, 282, 267–270. Lee MT, Ermann MD. 1999. Pinto “madness” as a flawed landmark narrative: An organization and network analysis. Social Problems, 46, 30–47. Lingard L, Reznick R, Espin S, Regehr G, DeVito I. 2002. Team communications in the operating room: Talk patterns, sites of tension, and implications for novices. Academic Medicine, 77, 232–237. Longley J, Pruitt DG. 1980. Groupthink: A critique of Janis’ theory. In: L. Wheeler (ed.) Review of Personality and Social Psychology. Beverly Hills, CA: Sage Publications. Pp. 74–93. Manderino MA, Berkey N. 1997. Verbal abuse of staff nurses by physicians. Journal of Professional Nursing, 13, 48–55. Marks MA, Mathieu JE, Zaccaro SJ. 2001. A temporally based framework and taxonomy of team processes. Academy of Management Review, 26, 356–376. Mitchell PH, Shannon SE, Cain KC, Hegyvary ST. 1996. Critical care outcomes: Linking structures, processes, and organizational and clinical outcomes. American Journal of Critical Care, 5, 353-363. Nelson EC, Batalden PB, Huber TP, Mohr JJ, Godfrey MM, Headrick LA, Wasson J H. 2002. Microsystems in health care: Part 1. Learning from high-performing front-line clinical units. Joint Commission Journal on Quality Improvement, 28, 472–493. Palmersheim TM. 1999. The 1999 ICSI/IHI colloquium on clinical quality improvement—“Quality: Settling the frontier.” Joint Commission Journal on Quality Improvement, 25, 654–668. Parker SK, Chmiel N, Wall T. 1997. Work characteristics and employee well-being within a context of strategic downsizing. Journal of Occupational Health Psychology, 2, 289–303.

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses Piotrowski MM, Saint S, Hinshaw DB. 2002. The safety case management committee: Expanding the avenues for addressing patient safety. Joint Commission Journal on Quality Improvement, 28, 296–305. Posner KL, Freund PR. 1999. Trends in quality of anesthesia care associated with changing staffing patterns, productivity, and concurrency of case supervision in a teaching hospital. Anesthesiology, 91, 839–847. Prescott PA, Bowen SA. 1985. Physician–nurse relationships. Annals of Internal Medicine, 103, 127–133. Reason J. 1990. Human Error. Cambridge: UK: Cambridge University Press. Reason J. 2000. Human error: Models and management. British Medical Journal, 320, 768–770. Roberts KH. 1997. The Challenger launch decision: Risky technology, culture, and deviance at NASA. Administrative Science Quarterly, 42, 405–410. Sasou K, Reason J. 1999. Team errors: Definition and taxonomy. Reliability Engineering and System Safety, 65, 1–9. Schaefer HG, Helmreich RL, Scheideggar D. 1994. Human factors and safety in emergency medicine. Resuscitation, 28, 221–225. Schmidt I, Claessen CB, Westerholm B, Nilsson LG, Svarstad BL. 1998. The impact of regular multidisciplinary team interventions on psychotropic prescribing in Swedish nursing homes. Journal of American Geriatric Society, 46, 77–82. Schmitt MH. 1990. Medical malpractice and interdisciplinary team dynamics. Proceedings of the 12th Annual Interdisciplinary Health Care Team Conference. Indianapolis, IN: Indiana University. Pp. 53–66. Schmitt MH. 1991. Alternative conceptualizations of “team” as the unit of analysis in examining outcomes of team health care delivery. Proceedings of the 13th Annual Conference on Interdisciplinary Health Care Teams. Indianapolis, IN: Indiana University. Pp. 9-16. Schmitt MH. 2001. Collaboration improves the quality of care: Methodological challenges and evidence from U.S. health care research. Journal of Interprofessional Care, 15, 47–66. Schmitt MH, Watson NM, Feiger SM, Williams TF. 1982. Conceptualizing and measuring outcomes of interdisciplinary team care for a group of long-term chronically ill, institutionalized patients. In: JE Bachman (ed.) Interdisciplinary Health Care: Proceedings of the Third Annual Interdisciplinary Team Care Conference at Kalamazoo, Michigan. Center for Human Services. Kalamazoo, MI: Western Michigan University. Pp. 169–182. Schmitt MH, Farrell MP, Heinemann GD. 1988. Conceptual and methodological problems in studying the effects of interdisciplinary teams. The Gerontologist, 28, 753–764. Schmitt MH, Heinemann GD, Farrell MP, Feussner JR, Cohen HJ. 2000. Evaluation of the process of care in the Cooperative Study of the Outcomes of Geriatric Evaluation and Management Inpatient and Outpatient Care. Gerontologist, 40, 343. Schofield RF, Amodeo M. 1999. Interdisciplinary teams in health care and human services settings: Are they effective? Health & Social Work, 24, 210–219. Sexton JB, Thomas EJ, Helmreich RL. 2000. Error, stress, and teamwork in medicine and aviation: Cross sectional surveys. British Medical Journal, 320, 745–749. Shine KI. 2002. Health care quality and how to achieve it. Academic Medicine, 77, 91–99. Shortell, SM, Rousseau DM, Gillies R, Devers K, Simons T. 1991. Organizational assessment in intensive care units (ICU): Construct development, reliability, and validity of the ICU nurse–physician questionnaire. Medical Care, 29, 709–726. Shortell SM, Zimmerman JE, Gillies RR, Duffy J, Devers K, Rousseau DM, Knaus WA. 1992. Continuously improving patient care: Practical lessons and an assessment tool from the national ICU study. Quality Review Bulletin, 18(5), 150–155.

OCR for page 341
Keeping Patients Safe: Transforming the Work Environment of Nurses Shortell SM, Zimmerman JE, Rousseau DM, Gillies RR, Wagner DP, Draper EA, Knaus W, Duffy J. 1994. The performance of intensive care units: Does good management make a difference? Medical Care, 32, 508–525. Shrednick HR, Shutt RJ, Weiss M. 1992. Empowerment: Key to IS world-class quality. MIS Quarterly, 16(1), 491–505. Sim TA, Joyner J. 2002. A multidisciplinary team approach to reducing medication variance. Joint Commission Journal on Quality Improvement, 28, 403–407. Simard M, Marchand A. 1995. A multilevel analysis of organisational factors related to the taking of safety initiatives by work groups. Safety Science, 21, 113–129. Sorine AJ, Walls RT, Brantmayer MJ. 1996. Collaboration: A cornerstone of successful safety management. Occupational Hazards, 58, 149–152. Sovie MD, Jawad AF. 2001. Hospital restructuring and its impact on outcomes: Nursing staff regulations are premature. Journal of Nursing Administration, 31, 588–600. Stone RI, Reinhard SC, Bowers B, Zimmerman D, Phillips CD, Hawes C, Fielding J, Jacobson N. 2002 (August). Evaluation of the Wellspring Model for Improving Nursing Home Quality. Retrieved 01/13/03. The Commonwealth Fund. Trey B. 1996. Managing interdependence on the unit. Health Care Management Review, 21(3), 72–82. Uhlig PN, Brown J, Nason AK, Camelio A, Kendall E. 2002. System innovation: Concord Hospital. Joint Commission Journal on Quality Improvement, 28, 666–672. Wadhwa S, Lavizzo-Mourey R. 1999. Do innovative models of health care delivery improve quality of care for selected vulnerable populations? A systematic review. Joint Commission Journal on Quality Improvement, 25, 408–421. Watson WE, Kumar K, Michaelsen LK. 1993. Cultural diversity’s diversity’s impact on interaction process and performance: Comparing homogeneous and diverse task groups. Academy of Management Journal, 36, 590–602. Weick KE, Roberts KH. 1993. Collective mind in organizations: Heedful interrelating on flight decks. Administrative Science Quarterly, 38, 357–381. Wong P, Helsinger D, Petry J. 2002. Providing the right infrastructure to lead culture change for patient safety. Joint Commission Journal on Quality Improvement, 28, 363–372. Zohar D. 2000. A group-level model of safety climate: Testing the effect of group climate on microaccidents in manufacturing jobs. Journal of Applied Psychology, 85, 587–596. Zwarenstein M, Bryant W. 2002. Interventions to promote collaboration between nurses and doctors. Cochrane Database of Systematic Reviews, 4. Retrieved 01/12/03.