emergency cooling, and can be moved away from a nearby population if necessary.

In our discussions with the Naval Nuclear Reactor Program and our knowledge of the program, we know that 131I exposure is possible for the crew and base personnel near the vessel. Base personnel are not considered the public in this situation just like employees at a reactor are not considered the public. However, significant thyroid doses at significant distances for the public located off the naval base are not likely if one takes into account all protective actions. The primary protective action would be to evacuate near the base if necessary; 131I will not be the only radionuclide released. Due to this smaller release, dilution of the plume prior to reaching the base boundary, and relatively small area required for protective actions, evacuation of the public would be completed before a 50 mGy (5 rad) thyroid dose would be received. All of this is in addition to the physical restrictions on the release previously mentioned: these reactors are very small compared to commercial reactors, operate at low power, and built to withstand battle damage.

Because of those design and operational features, the occurrence of a reactor accident on a Navy submarine is highly unlikely, and the radiological impacts of any credible event would be localized and not severe. The public would not be required to take any immediate protective action, and the thyroid dose of radiation received by any member of the public would be less than the threshold dose established by FDA and EPA for administering KI. Stockpiling or distributing KI to the public surrounding naval bases due to operation of naval nuclear-powered warships is not necessary.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement