Disease Outbreak on September 30 and October 1, 2003. Participants discussed the emergence, detection, spread, and containment of SARS; political responses to the epidemic; its economic consequences; basic research on coronaviruses; preparations for a possible reemergence of SCoV; and lessons learned from the SARS epidemic that could shape responses to future microbial threats.

This workshop summary does not contain consensus recommendations, nor does it represent a consensus opinion of the IOM Forum on Microbial Threats. Rather, it presents the individual perspectives and research of people who made presentations at the IOM workshop on SARS or who participated in workshop discussions.

While the workshop attempted to explore a range of issues that emerged from the SARS outbreak, it is important to recognize that neither the discussions nor this report provide an exhaustive survey of the body of knowledge about SARS. Some important issues not addressed through workshop discussions include analyses of modes of transmission in indoor environments, especially airplanes; consideration of major technological breakthroughs or new fields of inquiry that would significantly advance our ability to prevent and treat infectious diseases; and comparative analyses of actions and outcomes related to the public health responses of different countries.

It should also be noted that considerable effort was made to engage the participation of more Chinese colleagues in the presentations and discussion of the workshop. The short time during which the workshop was organized made it very difficult for Chinese counterparts to obtain the necessary travel visas. Contributions from Chinese participants were important to the workshop as were additional phone and email consultations to the development of this report.

The following text summarizes what transpired during the workshop and assesses how the world’s experience with SARS could potentially guide preparations by the public health community, researchers, and policy makers for future outbreaks of infectious disease.


SARS is unremarkable in certain ways among infectious diseases. For example, the transmission rate of SCoV pales in comparison with those of other known microbial threats, such as influenza, but appears to be similar to that of smallpox. Despite nationwide vaccination campaigns against influenza in the United States, an average of 36,000 U.S. residents die annually from influenza infections—nearly 50 times more people than the number killed by SARS worldwide (Centers for Disease Control and Prevention, 2002).

Yet the quality, speed, and effectiveness of the public health response to SARS brilliantly outshone past responses to international outbreaks of infectious disease, validating a decade’s worth of progress in global public health networking. Thus, in several respects, the SARS epidemic reflected fundamental

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement