reflects requirements of the Clean Air Act. Research complying with the committee’s portfolio, which was designed to inform both current and future decisions on standards and implementation, could not be fully sequenced with this near-term review. The divergent timetables of EPA’s immediate process and of the scientific research initiated after the committee’s first report reflect the exigencies of implementing a major research initiative and the challenges of scheduling the pace of scientific research, which inevitably has unanticipated hurdles. Typically, at least several years are needed to move from funding to publication of even the smallest study. Large toxicological and epidemiological studies of air pollution often provide published findings 5-10 years after funding is started.

The research agenda proposed by the committee is intended to have an impact on the PM NAAQS (including its four elements: the indicator, the averaging time, the statistical form, and the level), on the subsequent implementation of that NAAQS, and on future NAAQS reviews. This chapter describes the committee’s approach to evaluating research progress. Although the committee evaluates the research findings on PM on their contribution to the advancement of scientific knowledge without specific concern for EPA’s application, the committee is also mindful of the impact of the research agenda and the resulting research findings on the PM NAAQS, its implementation, and future reviews.

BACKGROUND

A key step in the use of scientific evidence for policy formulation is gauging research progress resulting in reduction of uncertainty. Committees of the National Research Council (NRC) and the Institute of Medicine (IOM) are frequently asked to evaluate evidence and reach conclusions. Examples of such evaluations include the toxicity of environmental agents, the value of specific health-care practices, and approaches to disease prevention. The NRC does not give its committees a template or a rigid process for these evaluations, although some committees have had mandated approaches. Committees of EPA’s Science Advisory Board often carry out similar evaluations, as do a myriad of committees of other agencies. Often the work of these committees involves hazard identification, reaching a discrete decision as to the potential of a particular agent or exposure circumstance to produce an increase in certain adverse health effects. In some cases, the evaluation may extend to a quantitative evaluation of the exposure-dose-response relationship for the agent.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement