4
Case Studies of Adaptive Management

This chapter reviews some of the Corps’ initial efforts in implementing adaptive management principles, most of which were initiated during the mid-1990s. These case studies include the Florida Everglades, the Missouri River Dam and Reservoir System, the Upper Mississippi River, and coastal Louisiana. A case study of the Adaptive Management Program at the Glen Canyon Dam and Colorado River ecosystem, in which the Corps is not involved, is included for comparative purposes, as there is a relatively long record of applying adaptive management principles to managing the Colorado River. A case study on the Columbia River, the site of one of the earliest adaptive management applications in a large U.S. river system (Lee, 1993), was considered but not included. Although the Corps has responsibilities for navigation and dam operations on the Columbia River, it has had only a relatively small role in formal adaptive management efforts, which mainly involved the Northwest Power Planning Council (renamed the Northwest Power and Conservation Council in 2003) and federal and state resources agencies. The settings of these case studies vary in terms of spatial scale, biophysical features, inter-agency relations, economic activities, and stakeholder preferences. Lessons from experiences in this breadth of settings may reveal general principles regarding potential barriers, useful management actions, or inter-agency relations that merit consideration in establishing and managing adaptive management programs.

FLORIDA EVERGLADES

The Everglades ecosystem (Figure 4.1) stretches from Florida’s Lake Okeechobee southward to the Florida Reef Tract. The pre-settlement ecosystem featured the slow movement of surface waters to the south and the west, which eventually emptied into the Atlantic Ocean and the Gulf of Mexico. This low-relief, marshy ecosystem is often referred to a



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 52
Adaptive Management for Water Resources Project Planning 4 Case Studies of Adaptive Management This chapter reviews some of the Corps’ initial efforts in implementing adaptive management principles, most of which were initiated during the mid-1990s. These case studies include the Florida Everglades, the Missouri River Dam and Reservoir System, the Upper Mississippi River, and coastal Louisiana. A case study of the Adaptive Management Program at the Glen Canyon Dam and Colorado River ecosystem, in which the Corps is not involved, is included for comparative purposes, as there is a relatively long record of applying adaptive management principles to managing the Colorado River. A case study on the Columbia River, the site of one of the earliest adaptive management applications in a large U.S. river system (Lee, 1993), was considered but not included. Although the Corps has responsibilities for navigation and dam operations on the Columbia River, it has had only a relatively small role in formal adaptive management efforts, which mainly involved the Northwest Power Planning Council (renamed the Northwest Power and Conservation Council in 2003) and federal and state resources agencies. The settings of these case studies vary in terms of spatial scale, biophysical features, inter-agency relations, economic activities, and stakeholder preferences. Lessons from experiences in this breadth of settings may reveal general principles regarding potential barriers, useful management actions, or inter-agency relations that merit consideration in establishing and managing adaptive management programs. FLORIDA EVERGLADES The Everglades ecosystem (Figure 4.1) stretches from Florida’s Lake Okeechobee southward to the Florida Reef Tract. The pre-settlement ecosystem featured the slow movement of surface waters to the south and the west, which eventually emptied into the Atlantic Ocean and the Gulf of Mexico. This low-relief, marshy ecosystem is often referred to a

OCR for page 52
Adaptive Management for Water Resources Project Planning Figure 4.1 Greater Everglades Ecosystem.

OCR for page 52
Adaptive Management for Water Resources Project Planning “river of grass,” a term coined by Marjorie Stoneman Douglas in her famous book on the Everglades ecosystem. Her book was published in 1947, the same year Everglades National Park was established. The ecosystem experienced significant human-caused alterations as early as the mid-eighteenth century, when parts of it were drained to promote agriculture and settlement. In 1907 the Everglades Drainage District was created (Blake, 1980) and by the early 1930s, 440 miles of drainage canals had been constructed in the Everglades (Lewis, 1948). Concerns about ecological degradation of the Everglades were raised as early as the 1920s, and by the time Stoneman wrote her book, the ecosystem had been extensively altered. These ecological changes continued in the late 1940s, when huge floods in 1947-48 across south Florida led Congress to establish the “Central and Southern Florida Project for Flood Control and Other Purposes.” This initiative led to accelerated ecological changes in the Everglades, as the project entailed levees, water storage, improvements of conveyance channels, and large-scale pumping to supplement drainage. All these projects helped channel water away from the Everglades in an effort to reduce floods, support agriculture, and promote settlement. The project also entailed the construction of a 100-mile perimeter levee separating the Everglades from coastal urban development. These hydrological changes were substantial and have been linked to, for example, declines in avian species and the listing of dozens of animal and plant species as federally threatened or endangered. In response to these declining ecological trends in the Everglades, the federal Water Resources Development Act of 1992 authorized a comprehensive review of the Central and Southern Florida Project. In 1993, the Corps of Engineers and the South Florida Water Management District began a Comprehensive Review Study (known as the “Restudy”) to determine the feasibility for modifications to improve the sustainability of South Florida (USACE and SFWMD, 2002). The Restudy led to publication of the Comprehensive Everglades Restoration Plan (CERP), a document that was approved in the Water Resources Development Act of 2000. Congress approved the comprehensive plan with an estimated cost of some $7.8 billion (1999 dollars) as a framework for planning projects to restore a major portion of the historic Everglades, including Everglades National Park, while meeting other water-related needs (e.g., water supply, flood management) of South Florida through 2050. In approving the plan, Congress included adaptive management (referred to as adaptive assessment) as an authorized activity, at a cost of $100 million, and provided for a 50/50 split of these costs between the federal government and the State of Florida. This authorization is notable for two rea-

OCR for page 52
Adaptive Management for Water Resources Project Planning sons. First, adaptive management was recognized explicitly as a water management approach for the first time in a civil works project authorization. Secondly, the Corps was authorized to share in the costs of all operations and maintenance costs of CERP, including the costs of "adaptive assessment and monitoring." The Comprehensive Restoration Plan was developed by the Corps of Engineers in partnership with the South Florida Water Management District, and with participation of several federal and state agencies and extensive public and stakeholder involvement. Its purpose is “to restore, preserve, and protect the South Florida ecosystem while providing for other water-related needs of the region, including water supply and flood protection (WRDA 2000, Title IV, Section 601(b), Public Law No. 106-541).” The plan is to be implemented to ensure protection of water quality, restore some degree of pre-settlement hydrologic conditions (including reductions of freshwater flows to several estuaries), improve environmental conditions of the South Florida ecosystem, and achieve and maintain benefits to the natural and human environments (as described in the plan) for as long as the project is authorized (http://www.evergladesplan.org; accessed January 28, 2004). The plan is designed to provide over 1,100,000 acre-feet of additional water annually to the environment and human uses. About seventy percent of the water would be devoted toward environmental objectives, and the remainder would be devoted to economic purposes—largely for domestic use by the additional six million residents expected to inhabit the region served by the project by 2050 (USACE, 1999). The Comprehensive Everglades Restoration Plan is not based on a traditional Corps feasibility study, but is largely a conceptual plan encompassing 68 individual projects. Major components of the plan involve sophisticated technical aspects, including large-scale use of aquifer storage and recovery for multiyear subsurface retention of captured surface water (NRC, 2001a), and subsurface seepage barriers to prevent loss of the captured water to the system as it is being stored and delivered (these techniques are not well-tested on this scale). Because of the plan’s size and complexity, it will take many decades to implement, and congressional authorizations to construct and operate the plan’s major elements will depend upon submission of detailed feasibility-level studies for individual projects. Additional modeling and design is underway to provide detailed project recommendations, and pilot projects are being developed to address technical uncertainties. Adaptive management will be critical to the plan’s evaluation and improvement. Key aspects of the

OCR for page 52
Adaptive Management for Water Resources Project Planning plan include additional water storage and water supply, improved water quality, and increased connectivity within the components of the hydrologic system. These features include more natural hydropatterns, including wet and dry season cycles; natural recession rates; surface water depth patterns; and, in coastal areas, salinity and mixing patterns characteristic of the natural system. Adaptive Management in the Restoration Plan The Programmatic Regulations for the Comprehensive Everglades Restoration Plan contain definitions regarding adaptive management within the plan: Adaptive management means the process of improving understandings of the natural and human systems in the South Florida ecosystem, specifically as these understandings pertain to the goals and purposes of the Plan, and to seek continuous improvement of the Plan based upon new information resulting from changed or unforeseen circumstances, new scientific or technical information, new or updated models, or information developed through the assessment principles contained in the Plan, or as future authorized changes to the Plan are integrated into the implementation of the Plan. Assessment means the process whereby the actual performance of implemented projects is measured and interpreted based on analyses of information obtained from research, monitoring, modeling, or other relevant sources (68 Fed. Reg. 218, 64,199-64,249). According to the proposed regulations, the purposes of the adaptive management program are to: (a) assess responses of the system to implementation of the plan; (b) determine whether or not these responses match expectations, including the achievement of the expected performance level of the plan, the interim goals and the targets for achieving progress towards other water-related needs of the region provided for in the plan; (c) determine if the plan, system or project operations, or the sequence and schedule of projects should be modified to achieve the goals and purposes of the plan or to increase benefits or improve cost effectiveness; and (d) seek continuous improvement based upon new in-

OCR for page 52
Adaptive Management for Water Resources Project Planning formation resulting from changed or unforeseen circumstances, or new scientific or technical information. Adaptive management activities are to be carried out by interagency and interdisciplinary scientific and technical teams organized under the Restoration Coordination and Verification program, or RECOVER (http://www.evergladesplan.org/pm/recover/recover.cfm; accessed January 28, 2004). These teams are established by the Corps of Engineers and the South Florida Water Management District to assess, evaluate, and integrate projects, with the goal of achieving system-wide goals and purposes. Adaptive management activities constitute only some of the many tasks within RECOVER. The RECOVER teams are not decision-making bodies. They make recommendations to the Corps and to the South Florida Water Management District, the latter which both implements and manages the project. The regulations indicate that these organizations are to use reports from RECOVER, reports of an independent scientific review panel (to be convened by the National Research Council), or other appropriate information for improving the plan by modifying its operations, goals, physical components, or the sequence of their implementation. An Initial Restoration Plan update (ICU) is planned, in which the plan is to be reconsidered and redefined. The General Accounting Office (2003) reviewed interagency science coordination related to the restoration of the South Florida ecosystem. From 1993 through 2002, federal and state agencies spent $576 million to conduct mission-related scientific research, monitoring, and assessment. However, the GAO found that the “key tools needed for effective adaptive management have not yet been developed, including (1) a comprehensive monitoring plan for key indicators of ecosystem health and (2) mathematical models that would allow scientists to simulate aspects of the ecosystem and better understand how the ecosystem responds to restoration actions” (GAO, 2003). It was further noted that: “without such tools, the process of adaptive management will be hindered by the fact that scientists and managers will be less able to monitor key indicators of restoration and evaluate the effects created by particular restoration actions” (ibid.). Even more recently, adaptive monitoring and assessment within the Comprehensive Restoration Plan was reviewed by the National Research Council Committee on Restoration of the Greater Everglades Ecosystem (CROGEE). The report from that committee concluded that: (1) the monitoring needs must be better prioritized; (2) system-wide indicators of ecosystem status should be developed to add to the present more nar-

OCR for page 52
Adaptive Management for Water Resources Project Planning rowly defined indicators; (3) region-wide assessment of external human and environmental drivers (such as population growth, land-use changes, water demand and sea level rise) is needed; (4) monitoring, modeling and research should be integrated to promote learning within an adaptive management framework; and (5) the process for scientific feedback to the restoration plan needs more consideration (NRC, 2003a). A 2003 draft monitoring and assessment plan from RECOVER (http://www.evergladesplan.org/pm/recover/aat.cfm; accessed January 28, 2004) represents some progress in addressing these concerns. Summary Adaptive management in the Comprehensive Everglades Restoration Plan is currently more of a concept rather than a fully-executed management strategy. As outlined in the programmatic regulations governing the implementation of CERP, adaptive management is broadly defined. It is being applied to all aspects of performance, including progress toward achieving non-environmental outputs such as domestic water supply and maintenance of flood protection. The plan’s ultimate restoration objectives are broadly and generally defined. To date, specific interim performance measures have not been developed, nor is it clear how the RECOVER teams will establish appropriate interim performance measures. The focus of the adaptive management effort is to relate outcomes and plan activities. There is, however, little explicit consideration of factors outside the plan (the external human and environmental drivers identified by CROGEE; NRC, 2003) that may influence ecological or other outcomes and that such factors must be considered within adaptive management. Some of these factors, such as prospective future changes in precipitation patterns, the direction and magnitude of which are not clearly understood, may be beyond the ability of managers to immediately prepare for. But other, more immediate factors such as population growth and associated increased water demands, are currently influencing outcomes and may be amenable to ameliorative actions. An adaptive management approach in the Comprehensive Restoration Plan is an ambitious undertaking. Substantial investments in scientific activities have been made. However, reviews by the General Accounting Office and the National Research Council Committee on Restoration of the Greater Everglades Ecosystem emphasized that significant improvements in the monitoring program, including priority setting and development of more comprehensive indicators of outcomes, are still

OCR for page 52
Adaptive Management for Water Resources Project Planning required. This is essential because monitoring and ongoing assessment plays a central role not only in measuring outcomes, but also in refining attainable goals and modifying plans to achieve them. A review of the plan illustrates the remaining challenges in fully integrating modeling, monitoring, and research into a framework that emphasizes learning for refining models, and in developing institutional mechanisms to ensure that knowledge gained is effectively applied in adaptive management. The Comprehensive Restoration Plan is on the leading edge of the Corps’ efforts to apply adaptive management in ecosystem restoration. These early evaluations of progress and shortcomings not only provide the opportunity for mid-course correction, but also serve as important lessons learned for adaptive ecosystem restoration in other parts of the nation. MISSOURI RIVER DAM AND RESERVOIR SYSTEM The Pick-Sloan Plan The most important and lasting water development project on the Missouri River was the Pick-Sloan Plan. Passed as part of the 1944 Flood Control Act, the Pick-Sloan Plan represented a merger of plans prepared by the Corps and the U.S. Bureau of Reclamation. The Corps’ plans focused on navigation enhancement and flood control through several dams on the Missouri’s mainstem. The Corps’ plans were being coordinated and promoted by the Corps’ Missouri River Division Engineer, Colonel Lewis Pick. The Bureau’s plans focused on irrigation and hydropower, and were developed in large part by the Bureau’s regional director, Glenn Sloan. The Bureau’s plans called for some ninety dams and reservoirs across the basin, along with hundreds of irrigation projects that would have doubled the basin’s irrigated acreage (Carrels, 1999). Both plans were presented to Congress at a time when the creation of a basin-wide Missouri River authority was being considered. The proposal to create a basin-wide authority was decidedly unpopular with both the Corps and the Bureau, but there was pressure from President Franklin Roosevelt to create a single plan for basin development. To forestall the creation of a new basin-wide authority, Pick and Sloan and their respective agencies agreed to combine their plans. Congress approved the combined plan, directing the Corps to build the mainstem dams and the Bureau to provide water to irrigated agriculture. Prior to the passage of

OCR for page 52
Adaptive Management for Water Resources Project Planning the Pick-Sloan legislation, the Corps constructed one large dam on the Missouri River—Fort Peck Dam in Montana—which was built in the 1930s. Under Pick-Sloan, the Corps built five additional mainstem dams in the 1950s and 1960s. In addition to these six mainstem dams, the Bureau of Reclamation built Canyon Ferry Dam (also in Montana). There are today seven dams and reservoirs along the Missouri River (see Figure 4.2 , in which the three largest reservoirs are labeled). FIGURE 4.2 Missouri River Basin. SOURCE: Modified from NRC (2003).

OCR for page 52
Adaptive Management for Water Resources Project Planning Current Setting The Missouri River dam and reservoir system supports a variety of uses, including recreation, fisheries, hydroelectric power generation, and flood control. The river also supports commercial navigation on a 735-mile stretch from the river’s mouth at St. Louis upstream to Sioux City, Iowa. Water releases from the system’s most downstream dam—Gavins Point—are scheduled to support a 9-foot navigation channel. Navigation is among the most controversial issues in current discussions of system operations. It was expected that the mainstem dams constructed as part of Pick-Sloan were going to generate substantial navigation benefits. But commercial traffic levels on the Missouri River have fallen well short of 1950 projections, peaking in 1977 at 3.3 million tons, with a fairly steady decline since then, to near 1.6 million tons in 1997 (USACE, 2000b). In comparison, barges on the Upper Mississippi carry more than 80 million tons per year (USACE, 2000b). Commercial navigation generated a modest (when compared with other benefits) level of $7 million of benefits in 1995 (USACE, 1998). Most of those navigation benefits are concentrated in the downstream sections of the navigable channel. The Corps maintains this 9-foot navigation channel pursuant to the 1945 Missouri River Bank Stabilization and Navigation Project. Since passage of this legislation, recreational use of the mainstem lakes has become much more important to upper basin economies. According to Corps data, recreation on the mainstem lakes increased from less than 5 million visitor hours in 1954 to more than 60 million visitor hours in fiscal year 2000 (USACE, 2000a). Annual recreational benefits for the region are estimated by the Corps at over $80 million annually (USACE, 1994). Authorized purposes of the dams and reservoirs include flood damage reduction, water supply and irrigation, navigation, hydropower, fish and wildlife, and recreation. Some of the values of these authorized purposes have changed greatly since the Pick-Sloan era. The appropriate balance of these sometimes competing uses are central to the current decision making context for the Missouri River dams and reservoirs, and figure prominently in the Corps’ ability to implement an adaptive management framework for the river and its basin. Management protocols for the Missouri River include many federal laws, one of which is the Endangered Species Act (ESA) of 1973. There have been significant post-settlement changes to riverine ecology: of 67 native fish species on the mainstem river, 51 are currently listed as rare, uncommon, or de-

OCR for page 52
Adaptive Management for Water Resources Project Planning creasing (NRC, 2002). One fish species (the pallid sturgeon) and two bird species (the least tern and the piping plover) are listed under the federal Endangered Species Act. In addition to these legal responsibilities, many stakeholder groups representing a wide and sometimes conflicting variety of preferences and values are intensely interested in management of the river. Interest groups that compete for Missouri River benefits include the basin states, navigation interests, environmental groups, floodplain farmers, river communities, and Native American tribes. The Corps Master Manual The six mainstem dams and reservoirs that the Corps operates on the Missouri River comprise the core of North America’s largest reservoir storage system. The operations guidelines for this system are embodied in the Corps’ Missouri River Master Water Control Manual, or “Master Manual,” the first version of which was issued in 1960 by the Corps’ Omaha office, which codified operations practices developed over the previous decades (Ferrell, 1996). The Master Manual does not define specific operating priorities for the system, but it does provide general guidance for addressing possible conflicts between uses. The Master Manual is supplemented by a more detailed Annual Operating Plan (AOP), which is also prepared by the Corps. In response to drought conditions across the Missouri River basin in the late 1980s, and because of strong differences of opinion on how the reservoirs should be operated, the Corps began revising the Master Manual. To date, the Corps has not yet produced a revised version of the Master Manual, a situation that reflects the complex and contentious political and legislative setting along the Missouri River. Implementing Adaptive Management The Corps has been involved with habitat restoration efforts on the Missouri since the mid-1970s. In cooperation with the U.S. Fish and Wildlife Service and with state conservation agencies, the Corps has implemented projects to mitigate the loss of natural resources resulting from bank stabilization and channelization of the river system. Formal authorization of the mitigation program dates to the 1986 Water Resources Development Act. The stated goal of the mitigation project was to restore five to ten percent of the habitat lost from the bank stabiliza-

OCR for page 52
Adaptive Management for Water Resources Project Planning Upper Mississippi are of great importance. In the 1986 Water Resources Development Act (WRDA 1986), the Upper Mississippi River Management Act stated that the river was to be recognized as “a nationally significant ecosystem and a nationally significant commercial navigation system” (P.L. 99-662). Despite this stated importance of ecological well-being, maintenance of the nine-foot navigation channel remains the prevailing authorization on the Upper Mississippi River. As pointed out in the 1999 U.S. Geological Survey report, the navigation pools and reduced variability in Mississippi River flows and river levels have negatively impacted river ecology: “Historical observations and research findings together make it clear that the reaches have been changed by human activity in ways that diminished their ecological health” (USGS, 1999). The WRDA 1986 legislation does not provide clear guidance to the Corps on how to appropriately balance traditional economic values (navigation) and environmental values. Lacking clear direction on how to appropriately balance these values, the Corps abides by the congressional mandate to provide a minimum nine-foot channel, and implements environmental restoration and protection programs such that this channel depth is not compromised. Environmental groups are generally dissatisfied with this operational regime, claiming that the balance called for in the WRDA 1986 has “ … never been reflected in national policy … ” and that “ … some balance between these competing needs must be sought” (League, 2003). The 1930 channel authorization does not require strict and permanent maintenance of a 9-foot channel, however, and the exploration of alternative operational regimes would allow the Corps more flexibility to implement adaptive management actions and increase ecosystem resilience. At the same time, some stakeholder groups and some citizens have demonstrated a reluctance to allow the Corps to enact substantial navigation pool drawdowns. Adaptive management could provide a framework for stakeholders and the Corps and other federal agencies to explore the relations and trade-offs between Upper Mississippi River ecology, navigation, recreation, and other uses in a more systematic fashion. COASTAL LOUISIANA Multiple Corps Responsibilities For over a century the Corps has played a large role in coastal Louisiana through its flood control and navigation mission relative to the

OCR for page 52
Adaptive Management for Water Resources Project Planning Lower Mississippi River. The establishment of a system of levees along the lower river in the 1930s to both prevent flooding of adjacent lands and to confine to the river to its channel and thus enhance navigation, was consistent with a mandate to protect citizens and infrastructure from flooding and to facilitate economic development. The impact of these measures in isolating the Mississippi River Deltaic Plain from the river, and thus its sustaining source of freshwater and sediments, were unappreciated at the time. In the aftermath of the historic 1927 flood, the Corps was also directed to regulate the river flow from the Mississippi and Red rivers down the Atchafalaya River to the Gulf of Mexico and to construct and manage spillways to alleviate the risk of overtopping of levees. In the later half of the twentieth century, the federal interest was expanded to include a number of relatively deep navigation channels, such as the Mississippi River-Gulf Outlet and Calcasieu Ship Channel, connecting inland ports and waterways with the Gulf of Mexico. These channels caused salt water to intrude into previously freshwater bays, bayous, and wetlands. The network of flood protection levees was also extended to afford communities protection from storm surges and backwater flooding. The Corps regulatory programs also played a role in the dramatic environmental changes in coastal Louisiana, permitting extensive channelization of coastal wetlands mainly related to oil and gas exploration, development, and transportation. Wetland Loss As a result of the cumulative effects of these and other alterations of the coastal landscape, and the disruption of the processes that created and sustain the delta and adjacent coastal environments and natural processes, the marshes, swamps, bays and barrier islands that comprise coastal Louisiana experienced dramatic changes during the latter half of the twentieth century. The rate of net loss of Louisiana’s coastal wetlands has been estimated at 25 to 35 square miles per year during various segments of this half-century (Louisiana DNR, 1999), posing threats to the productivity and biological resources of the coastal ecosystems, the safety of residents, and the infrastructure supporting this population and important industries such as oil and gas production. The causes of rapid wetland loss and change in the characteristics of associated estuarine environments are multiple and complexly interrelated. The changes accompanied and followed pervasive physical and

OCR for page 52
Adaptive Management for Water Resources Project Planning hydrological alteration of the estuarine-wetland complex itself at a number of scales. The large-scale navigation channels mentioned above facilitated more extensive and vigorous tidal exchange and interconnection of previously isolated hydrological basins. Extensive canals were dredged through the wetlands to afford access to oil and gas exploration and production sites and corridors for transportation of product via pipe-lines. In addition to the direct losses of wetland due to dredging, the material removed was typically side cast as spoil banks that interrupt the natural inundation and drainage of the wetlands. Still other wetlands were affected by impoundments associated with failed agricultural conversion or with water-level management to provide waterfowl habitat. The net direct and indirect consequences of these physical and hydrological alterations were greater intrusion of tides, storm surges, salinity, and impoundment of water on wetland surfaces that causes mortality or prevents recruitment of emergent plants. The human-induced changes that began even earlier (i.e. closure of distributaries along the lower river such as Bayou Lafourche and the prevention of flood-induced crevasses and seasonal overbank flooding) led to a longer-term problem for the Deltaic Plain wetlands. The periodic supply of sediments, fresh water, and nutrients from the Mississippi River has historically built and sustained the wetlands in the face of very high rates of relative sea-level rise due to subsidence of the thick layer of Holocene sediments on which the wetlands sit. In addition, it now appears that withdrawals of oil, gas, and associated formation waters during the last half of the twentieth century caused accelerated subsidence in some regions of the coastal zone. The only portions of the Louisiana coastal zone that have had only minor losses of wetlands or that have actually gained wetlands are adjacent to the mouth of the Atchafalaya River, which receives thirty percent of the combined flow of the Mississippi-Red river system. These wetlands have received the fluvial subsidies that have been interrupted elsewhere. Scientific consensus suggests that whatever the cause, channelization of wetlands, subsidence, or even accelerated sea-level rise due to global warming, reconnection to the fluvial supply of sediments and other materials that build and sustain the coastal wetlands must be the foundation for maintaining and restoring coastal Louisiana’s ecosystems (Boesch et al., 1994).

OCR for page 52
Adaptive Management for Water Resources Project Planning Role of the Corps in Wetland Restoration In recent decades, the Corps has been the lead agency in efforts to address some of the effects of these actions through projects justified on the basis of their net economic development benefits, rather than for ecosystem restoration. These include the placement of materials dredged from river channels to create or protect wetlands and controlled diversions of Mississippi River waters into adjacent estuaries and wetland at Caernarvon and Davis Pond, the former into the Breton Sound Basin and the latter into the Barataria Basin (Figure 4.4). The latter projects aim to restore salinity gradients to benefit economically important estuarine oyster habitat. FIGURE 4.4 Louisiana Coastal Wetlands. SOURCE: Johnston, et al. (1995).

OCR for page 52
Adaptive Management for Water Resources Project Planning The role of the Corps of Engineers in the restoration of coastal Louisiana ecosystems expanded significantly with passage of the Coastal Wetlands Planning, Protection and Restoration Act of 1990 (CWPPRA, PL-101-464). Although this act is national in scope, it established a priority for Louisiana wetland restoration projects. CWPPRA provides a dedicated federal revenue stream of approximately $35 million per year for restoration projects selected and managed by a federal-state Task Force (the Corps receives the appropriations and chairs the Task Force). To date, there have been 141 different CWPPRA projects across coastal Louisiana (USGS, 2003), most of which have been demonstrations or relatively small projects involving shoreline protection, hydrological restoration, or wetland creation. The federal agencies represented on the CWPPRA Task Force and the State of Louisiana realized, however, that although the CWPPRA projects have been increasingly integrated within the hydrological basins along the coast, the approach was still piecemeal and inadequate in scale to significantly reduce, much less, reverse the rate of wetland loss across the state. The funding level for CWPPRA did not allow consideration of the large and expensive diversions of river water into the surrounding wetlands that experts thought would be needed to effectively address the problem. The Task Force and the state produced a much more comprehensive and ambitious strategy, Coast 2050: Toward a Sustainable Coastal Louisiana (Louisiana Coastal Wetlands Conservation and Restoration Task Force and the Wetlands Conservation and Restoration Authority, 1998; http://www.mvn.usace.army.mil/prj/lca/; accessed May 4, 2004), which included more than 80 projects and actions to achieve objectives for each of the hydrological basins along the coast. The feasibility and benefits of many of the approaches included in the 2050 Plan are highly speculative. Consequently, the Corps of Engineers, with co-sponsorship by the State of Louisiana, is currently undertaking the Louisiana Comprehensive Coastwide Ecosystem Restoration Feasibility Study, or LCA Study for short. The LCA study builds on the 2050 Plan, but seeks to provide more rigorous analysis of design alternatives, benefits and costs within each of three subprovinces along the coast (Figure 4.4). Led by the New Orleans District office, the Corps is preparing a report to Congress that will seek authorization under the Water Resources Development Act for a comprehensive program to address wetland loss in coastal Louisiana. The authority would be for an umbrella program, much like the Comprehensive Everglades Restoration Project, under which specific projects would be subsequently authorized and funded.

OCR for page 52
Adaptive Management for Water Resources Project Planning Summary Various forms of adaptive management have been employed in several previous projects implemented by the Corps for economic development, for CWPPRA projects, and in the development of the Louisiana Comprehensive Coastwide Ecosystem Restoration report. River diversions at Caernarvon and Davis Pond have been monitored to determine the effects on salinity distribution and to address concerns about the introduction of harmful substances or other undesirable effects. Although not specifically designed to support adaptive management, interpretations of the monitoring data at Caernarvon (Lane et al., 1999) have contributed to quantifying nutrient removal and wetland growth rates in ways useful to the design of future diversions and the operational regimen for this diversion. For example, analysis of results from the estuaries and wetlands receiving the Caenarvon diversion have led to the realization that significant restoration benefits could be achieved through pulsed releases lasting several weeks while avoiding undesired salinity lowering on oyster grounds lower in the estuary. This is now being tested by more closely monitoring experimental releases within an adaptive management framework. The LCA Study is explicitly applying adaptive management, within the Corps’ existing authorities, as a means of refining the design and operation of specific projects and learning by doing within the envisioned umbrella program that will extend over several decades. An adaptive management approach is particularly suited to the emerging strategy because of the multiple, but similar, water diversion and control components that are being considered, and because of the uncertainties involved not only in project performance, but in other important variables (e.g., variations in river flow, impacts of hurricanes, etc.). GLEN CANYON DAM AND THE COLORADO RIVER ECOSYSTEM One of the notable and sustained adaptive management efforts in the United States is the Glen Canyon Adaptive Management Program (AMP). Founded in 1995 to help meet the monitoring requirements established in the 1992 Grand Canyon Protection Act, the AMP is building upon the extensive scientific program of the former Glen Canyon Environmental Studies (or GCES, which was conducted in two phases, 1982-

OCR for page 52
Adaptive Management for Water Resources Project Planning 1988 and 1988-1996). The Adaptive Management Program is focused on the Colorado River ecosystem in the Grand Canyon (Figure 4.5). The Secretary of the Interior’s designee administers the AMP. The Grand Canyon Protection Act of 1992 mandates operation of the dam to “… protect, mitigate adverse impacts to, and improve the values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established.” An Environmental Impact Statement (U.S. Bureau of Reclamation, 1995), conducted in response to concerns over the downstream effects of the operations of Glen Canyon Dam, established the AMP to provide advice to the U.S. Secretary of the Interior on a continuing basis. An Adaptive Management Work Group (AMWG) includes representatives of roughly two dozen groups with interests in the Grand Canyon and in Glen Canyon Dam operations (these groups include federal and state agencies, environmental groups, Indian tribes, and power and recreation interests). A Technical Work Group (TWG), composed mainly of representatives of the AMWG stakeholders, advises the AMWG on scientific and technical matters. The program also features a science center, composed of full-time staff, known as the Grand Canyon Monitoring and Research Center (GCMRC) in Flagstaff, AZ. The center is responsible for monitoring Colorado River ecology to help improve understanding of the downstream effects of Glen Canyon Dam operations. And, according to the 1995 environmental impact statement that described the structure and operations of the AMP, it is also to include an independent review panel(s) (U.S. Bureau of Reclamation, 1995). Although the Corps of Engineers is not a participant in the Adaptive Management Program, the preeminence and lengthy experience with adaptive management in the Grand Canyon should be of interest and value to the Corps. The AMP is based on recognition that operations of Glen Canyon Dam have significantly altered downstream ecology of the Colorado River in the Grand Canyon. Section 1802 (a) of the AMP has implemented some adaptive management program components to good effect. The Grand Canyon Monitoring and Research Center has taken the lead in informing stakeholders about the goals of and uncertainty involved with adaptive management. Through activities ranging from meetings to rafting trips, stakeholders have developed informal relations and lines of

OCR for page 52
Adaptive Management for Water Resources Project Planning FIGURE 4.5 Grand Canyon River Ecosystem and Colorado River Basin (Inset). SOURCE: U.S. Bureau of Reclamation (1995).

OCR for page 52
Adaptive Management for Water Resources Project Planning communication. Experimental flows have been conducted, the most notable being a controlled flood in March 1996 when high water flows were released from the dam to simulate the spring rise that, in pre-dam conditions, transported sediment and helped restore beach habitat. Another experiment in the summer of 2000 involved low water flows in an effort to enhance conditions for native fish species. These experiments were extensively monitored and the results used in subsequent deliberations about dam operations. The AMP is, however, struggling with the constraints inherent to most adaptive management efforts. Different values and priorities among stakeholders have stymied the creation of a set of clearly stated management objectives. As noted in a 1999 National Research Council report, the AMP has “not produced a scientific and stakeholder-based consensus regarding the desired state of the ecosystem.” Further, the range of possible experimental actions is limited by political and economic conditions. For instance, some recommended experiments in 2001 were postponed because of increased energy demand on the West Coast. Finally, and importantly, the independent review component of the program has never been fully and formally implemented. Lessons from the Adaptive Management Program that may be useful for the Corps include: the value of a congressional act in keeping focused on ecosystem recovery, the difficulties in forging consensus among stakeholders, the uncertainties and disagreements associated with some ecosystem monitoring results, the limitations of science to help establish management actions, and the potential value of (as well as some resistance to) independent review in addressing controversial or sophisticated issues. COMMENTARY The Corps has implemented some adaptive management principles and programs, with degrees of support from the U.S. Congress ranging from no specifically authorized capacity, to resources for monitoring and science programs, all the way to explicit authorization of adaptive management in the Florida Everglades. A review of the case studies presented in this chapter yields several observations and some commonalities. Adaptive management is often implemented in river and aquatic ecosystems that are experiencing ecological decline, sharp differences of opinion among stakeholder groups, and an inability to make significant

OCR for page 52
Adaptive Management for Water Resources Project Planning departures from the status quo. Many parties, however, view the concept with skepticism; defenders of the status quo naturally resist new management directions, managers may interpret its implementation as indicating failure of their past decisions, some may view it as a vehicle to help circumvent environmental and other standards or for taking only minimal actions, and budgeteers may be concerned that it implies a blank check for an endless stream of monitoring and science-based programs. Whatever perspectives are held, successful implementation of adaptive management will require sustained participation. In addition to these barriers, actions taken under an adaptive management framework may not yield an abundance of positive and clearly understood results. Paradoxically, however, these conditions may actually enhance the chances of the usefulness and success of adaptive management. Legislators should recognize that declining ecological conditions must eventually be addressed in order to conform with environmental statutes such as the Endangered Species Act. Stakeholders who wish to see management changes may welcome the prospects presented by adaptive management. In any event, the settings of declining environmental quality and political gridlock have often resulted from conflicts that have obstructed efforts to employ adaptive management-like principles and to adjust to emerging realities of shifting and broadening social preferences. Decisive management actions and ecological recovery have, for the most part, not been realized, but given that it has often taken decades to arrive at the current situation, the way forward will require patience (whether adaptive management is used or not). Increased social preferences and attendant legislation aimed toward restoration of some degree of natural ecological processes and sustainability offer opportunities for adaptive management actions. Initiating communications among stakeholders is of great importance to the Corps and to the adaptive management process. The backing of the administration and the Congress, in terms of resources, as well as legislative authority, is crucial in encouraging sustained stakeholder participation in such efforts. In the Missouri, Congress has not established a formal adaptive management stakeholder group or larger program, or a formal basin-wide science program. By contrast, support from the administration and the Congress has been instrumental to the significant adaptive management programs in the Everglades and the Grand Canyon. Federal resources have been important to improving knowledge of ecological conditions in the Everglades, the Grand Canyon, the Louisiana Coastal Area, and within the Upper Mississippi River’s Environmental Management Program. Sustained support

OCR for page 52
Adaptive Management for Water Resources Project Planning from Congress for monitoring on the Upper Mississippi has helped synthesize and improve scientific knowledge of the Upper Mississippi River system. Congressional legislation mandating the Everglades restoration effort, establishing the Coastal Wetlands Planning, Protection and Restoration Act, and creating a Grand Canyon Protection Act have legitimated efforts toward improving ecological conditions. Beyond the provision of resources, the administration and the Congress should help provide clearer direction to the Corps when the agency is obliged to respect legislation and administration guidance that reflects internal inconsistencies.