intended health effects, using both targeted and profiling approaches (see Chapter 4). Employing a combination of these approaches builds on what is known and will increase the ability to detect or even prevent unsuspected consequences.

Current approaches likely will be limited when applied to new GE foods with substantially altered composition. Consequently, a conceptual approach is presented in this chapter, grounded in the biological basis of adverse effects on human health and relying significantly on robust information regarding exposure.

Despite the power of methods suggested by this conceptual approach and their ability to identify GE foods likely to have adverse effects, it is impossible using any method to prove the lack of an unintended effect. This is particularly true given the current state of knowledge regarding the exposure patterns of U.S. populations and how single food and mixtures of food components affect health. Thus requiring proof that there is no possibility of an unintended effect is not realistic for an assessment standard.

The general conceptual approach for predicting and detecting adverse health outcomes discussed in this chapter is based on a risk assessment strategy proposed by the National Research Council (NRC, 1983) and relies on “substantial equivalence” to illustrate distinctions that may exist between foods modified by genetic engineering and those modified through traditional (non-GE) methods. This approach rests on the likelihood and functional significance of adverse outcomes of unintended or intended modifications being determined by several factors. These factors relate to the nature of the modification, such as whether it is quantitatively large or small and whether it is novel, and the characteristics of the compositional changes in question, such as dose-response outcomes and the nature and extent of likely exposures. Additionally, it considers population characteristics related to susceptibility, such as age, genetics, and nutritional status.

STAGES IN THE DEVLOPMENT OF GE FOODS

The development of a GE food involves a complex process that can be viewed as occurring in three stages: gene discovery, selection, and product advancement to commercialization. The safety of GE food should be assessed at all stages of its development (Taylor, 2001).

Starting with an initial product concept, the gene discovery stage involves screening genes from many sources and selecting those that might contribute to a marketable result. Ideally, safety assessment should begin during this early gene-selection phase by taking into account each gene’s source, previous consumer exposure to the source, and whether there is a history of safe use for source material, the gene, and its specific products.

In the case of GE plants, animals, and microbes, the next stage of the developmental process is line selection. Plants, for example, progress through a variety of steps in the greenhouse and field during which the biological and agronomic equivalence of the GE crop should be compared with its traditional counterpart.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement