developed using non-genetic engineering methods—discussed previously in this chapter (Laurila et al., 1996).

The products of a narrow cross-pollination, from a plant of a given species to another plant of the same species, or even the same subspecies, are less likely, but not guaranteed, to pose unintended risks. This is due to the expectation that pollination is inherently safer than other methods of gene transfer because the range of resulting products is typically limited to those products already present in the species or subspecies. However, even this likely “safe” method is subject to occasional spontaneous mutations or infelicitous genetic recombination events leading to novel and unexpected products, and these products may carry some degree of risk, such as disease susceptibility, leading to, for example, hazardous levels of fungal mycotoxins. Expanding the range of conventional breeding beyond the same species provides a greater opportunity to introduce novel genetic information and thereby novel sources for unexpected effects.

Triticale is a man-made crop developed by breeding wheat with rye; hordecale is a similar product of barley and rye. Both examples bring together thousands of genes in a way that does not occur in nature and which conceivably could result in the production of undesirable toxicants. As discussed previously in this chapter, the conventional potato breeding program combining Solanum tuberosum and S. brevidens produced not only the expected toxicants, but also a new one, demissidine, which is not produced in either parent (Laurila et al., 1996).

Although some products can be reasonably predicted to be hazardous, this does not imply that all products of rDNA—or other methods of bringing together genes—are necessarily hazardous. Agrobacterium and the particle gun are the only two rDNA methods represented on the continuum in Figure 3-1 because they provide almost all of the GE crops approved for commercial release. They are depicted separately because of the documented predilection of the particle gun to introduce multiple, broken, or rearranged DNA segments, in contrast with the usually singular and high-fidelity transfer typical of Agrobacterium.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement