The more disorganized particle gun mechanism increases the risk of insertion into crucial endogenous sequences. The degree of increased risk is as yet undetermined and may be minimal. However, in both cases sufficient numbers of events are generated and screened to make it possible to identify those with the most desirable insertion features, the best expression of desired genes, and the least likelihood of deleterious features, in much the same way that conventional breeders evaluate their breeding lines.

Continuum Conclusions

Unintended adverse health effects can be either predictable or unpredictable. All organisms undergo spontaneous mutations, giving rise to novel traits, which may carry some hazard. The incidence of such mutations is relatively rare and the type of hazard associated with them is generally not predictable. On the other hand, introduced mutations, such as by rDNA, theoretically allow a gene from any species to be inserted into and expressed by a food crop. Clearly, such a product has the potential to be hazardous if the inserted gene results in the production of a hazardous substance. Although the process of rDNA is itself not inherently hazardous, the resulting product of the process may be.


This chapter reviews examples of unintentional changes that resulted from the genetic modification of various organisms intended for food and the likelihood of unintentional changes arising from multiple methods of genetic modification. All forms of genetic modification, conventional and modern, may potentially lead to unintended changes in composition, some of which may have adverse health effects.

The range of biotechnology methods, including genetic engineering, makes it possible to alter, add, or remove genes from conventional food organisms. This manipulation of genetic information may pose either risks or benefits to health or the environment. Examples abound in which a single gene can have a dramatic effect or no effect at all, depending on its features. Similarly, chromosomal changes can also have either a dramatic or no apparent effect, again depending on the features of the genes involved (NRC, 2002).

Risks to human health from genetic changes in foods must, therefore, be placed in proper context. The introduction of allergenic proteins is a potential adverse health effect of concern that could arise from genetic modification, including genetic engineering, of food. These methods of breeding, however, are not the only way that potential allergens are introduced into the food supply (see Chapter 5).

Although genetic modification techniques may introduce unpredicted adverse health effects, a given technique itself is not a determinant of many more com-

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement