the different ways of thinking about shortest distances (e.g., as the crow flies versus route distance in a rectangular street grid), the ability to extrapolate and interpolate (e.g., projecting a functional relationship on a graph into the future or estimating the slope of a hillside from a map of contour lines), and making decisions (e.g., given traffic reports on a radio, selecting an alternative detour).

Boxes 1.1 and 1.2 illustrate the process and power of spatial thinking. While both deal with waterborne threats to public health, the key parallels lie in their imaginative treatments of epidemiological data. Mapped patterns of spatial variability in levels of cholera incidence and dissolved arsenic can be understood in terms of the source of drinking water—in the first case as a function of the differential surface location of the wells and, in the second case, the differential depth of the wells. Both cases depend on visualization in three dimensions, with the differential contamination levels within the spatial structure of subsurface aquifers providing the explanation for the patterns of spatial variability in health impacts. In the first case, the technology of data acquisition and graphic production is relatively simple; in the second case, it depends on sophisticated technologies that produce remarkable levels of locational accuracy. In both cases, the technology enables an exploratory and explanatory approach to problem solving that draws on the scientific knowledge, intuition, and experience of researchers.


The title of the proposal for this report was Support for Thinking Spatially: The Incorporation of Geographic Information Science Across the K–12 Curriculum. Given the need for increased scientific and technological literacy in the workforce and in everyday life, we must equip K–12 graduates with skills that will enable them to think spatially and to take advantage of tools and technologies—such as GIS (geographic information systems) (see Box 1.3)—for supporting spatial thinking. Therefore, the charge contained two questions, the first of which was intended to generate recommendations for levels of technology (hardware and software), system supports (e.g., teaching materials), curriculum scope and sequence (e.g., the role of necessary precursors), and pre-service and in-service training, while the second was intended to generate recommendations based on an assessment of theoretical and empirical approaches, in psychology and education, relevant to the development of knowledge and skills that underpin the use of GIS.

However, the committee recognized that the charge could not be met without first addressing the educational role of spatial thinking itself. New and better support tools for education—such as GIS—may well be necessary and appropriate, but to what purpose and in what contexts? The answer might seem obvious from the proposal title: to support spatial thinking across the K–12 curriculum. However, such a response points to a fundamental question: Why—and where—do we need to support spatial thinking across the K–12 curriculum? Why should we invest in better GIS or other support tools? What is the role of spatial thinking in everyday life, the workplace, and science?

After learning to appreciate the fundamental importance of spatial thinking, the committee came to a new understanding of the charge. Questions about the current role and future development of GIS as a support system could be answered satisfactorily only after the societal and therefore educational need for spatial thinking, and the ways in which we learn to think spatially, were understood.

Therefore, the committee developed an understanding of two additional questions: (1) What are the nature and character of spatial thinking? (2) How does the capacity for spatial thinking develop and how might it be fostered systematically by education and training? This revision to the committee charge was approved by the National Research Council (NRC) and met with consent from the project sponsors.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement