FIGURE 1.1 Snow’s 1855 map showing the areas of south London served by two water companies. Original 535 × 410 mm. Lithograph 7560.e.67, printed color. SOURCE: Robinson, 1982, p. 179. Reproduced by permission of the British Library.

of spatial variations in the other (water sources). From this analysis, he drew a causal explanation and accounted for the differential death rates.

This brilliant exercise in thinking would now be accomplished more rapidly and accurately with the support of global positioning system (GPS) technology and a geographic information system. Nevertheless, the fundamental properties of the thinking process would remain the same. Data are represented in a spatial context, and through a reasoning process, a problem is solved.

underappreciated, and therefore, underinstructed. Despite the practical importance of spatial thinking—historical and contemporary—the committee recognized that scientists and educators have not yet clearly identified and described the operations of spatial thinking. Without a clear understanding of the nature and character of spatial thinking, it is impossible to design instructional systems and technologies to support it.

1.4 AN OUTCOME OF THE REPORT: FOSTERING SPATIAL LITERACY

The committee was charged with exploring ways of supporting the process of thinking spatially. If this charge is met successfully, then American students will become more spatially literate. Section 1.4.1 defines the components of spatial literacy, and Section 1.4.2 presents the characteristics of a student who is spatially literate.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement