BOX 9.1
Technological Evolution in GIS

Technological Change in Computing

GIS software has changed in response to more users, more options, more analytical power, greater ease of use, and more and higher levels of capacity requiring more computing power. The changes are reflective of Moore’s Law, which suggested that computer power doubles every 18 months. GIS has undergone a rapid evolution. ArcGIS—a suite of integrated products to provide ever more power and capacity to the surging number of GIS users—has eclipsed ArcView 3. ArcView 3 was not rendered obsolete because it works on a great range of technology; there is still an important role that ArcView 3 fills.

As the same time technology changes, so too do demands from users. More people are interested in viewing data spatially and in asking analytical questions about their data. However, few people are familiar with cartographic principles and crucial concepts such as projections and datums. At the same time, many software packages are more “intelligent,” helping users make more sensible (or at least predictable) choices. Therefore, people expect GIS software to be more helpful and to make fewer demands on them in advance.

In the last five years, the Internet has grown in importance. It is now an essential part of daily life for millions. It is a critical delivery mechanism for geographic data and software. GIS technology can take advantage of additional and more complex formats, a wider variety of content, and data capacity that has increased by orders of magnitude. Data from the Internet can be downloaded and stored “permanently” or used “on the fly” without local storage. Likewise, the Internet can deliver software for downloading, installing, and using (“thick clients”), or one can rely on the Internet (“thin clients”) as the access channel to GIS capacity.

These changes to technology and the audience generate enormous challenges. How do you create software that allows people greater power and more options while increasing ease of use? It is difficult to maximize all variables at once. Software standards have made the “look and feel” of interfaces more predictable. However, added benefits require clever programming, more wizards, better help files, and more testing.

With change come costs: software expands in terms of disk space consumed, and delivery modes shift from floppies to CDs and now to DVDs. Each new opportunity means new complexities, which require software integration and new instructions for users. Variation in and evolution of hardware and software mean that GIS technologies have to adapt. Widespread usage means that the adaptations have to be more broadly integrated. Patches and service packs are more common and more accepted.

Fortunately, storage has decreased in price and increased in availability. Recent computers are well equipped to handle larger packages of software and especially data. Internal disk drives are typically 10 times the size they were a few years ago, and external hard drives are even larger; disk space is cheap. Everything is faster than before.

Change in GIS

ArcGIS is a family of software products designed to provide a full range of GIS capacity to a wide range of users. It includes desktop GIS at several levels (ArcReader, ArcView, ArcEditor, and ArcInfo, with extensions to enhance capacity), mobile or handheld GIS (ArcPad), server-based GIS tools (ArcIMS, ArcGIS server, ArcSDE), and embeddable GIS (ArcGIS Engine). The products take advantage of new data storage formats (geodatabases). The result is a more scalable system for GIS across an entire “enterprise” (or “organization”) or out to the general public.

There are opportunities for teachers to incorporate GIS.

  1. Perhaps the most significant event has been the release of Mapping Our World: GIS Lessons for Educators (Malone et al., 2002). The book provides software, data, projects, instructions, and the support materials that teachers expect. While some teachers have trouble implementing the technology, the book has helped many teachers to be successful. Its tightly organized and well-constructed curriculum is the key for most teachers. The version engaging ArcView 3 was released in spring of 2002; a version using ArcView 9 was released in 2005.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement