route. The peg word system, the method of loci, and other imagery-based systems produce dramatically better memory performance than do the techniques people tend to use in everyday contexts such as verbal rehearsal. Interactive images are remarkably long-lived in terms of their resistance to being forgotten over time, as illustrated in Luria’s (1968) book about a famous memory performer who used the method of loci on stage. Imagery-based systems entail a structure—a rhyme in the case of the peg word system, a route in the case of the method of loci—that provides a systematic way to interrogate one’s memory and to retain the ordering of items. The spatial version of the system has been used and taught for thousands of years. It exemplifies the power of a spatial representation to encode any type of information for later recall.

IMPROVING RECALL THROUGH SPATIAL REPRESENTATIONS

Bower (1973) not only has demonstrated the power of imagery and representation in the construction of memories, but also has shown that the perspective we adopt in constructing such visualizations can influence heavily what we are later able to recall and the properties of the imaginable representations we construct.

Physically reinstating the environmental context in which information was learned (that is, revisiting the physical context) can improve even an infant’s ability to recognize information weeks or months later (Rovee-Collier et al., 1999). For older children and adults, however, a physical visit is not necessary: simply imagining the environmental context in which things were learned can improve recall (Bruck and Ceci, 1999; Smith and Vela, 2001). Significantly, mental reinstatement of the original context has about the same benefits as physically reinstating the context itself (Bjork and Richardson-Klavehn, 1989; Smith et al., 1978). Such findings may explain reports from test takers that recalling where, exactly, a needed fact was on a page of text helps them recall the fact.

The fact that mental reinstatement can aid in retrieval of episodic information has been incorporated in the design of cognitive interviews used by police officers (Fisher et al., 1989). The interview procedure depends in part on generating images of the environmental context as a method of prompting memory by eyewitnesses and has been used successfully with children as well as adults (McCauley and Fisher, 1995). Witnesses are asked to replay the event in their minds, first from one perspective, such as the event unfolding as they witnessed it, and then from another perspective, such as a bird’s eye view of the event. Details that witnesses are unable to recall from one perspective can sometimes be recalled from another perspective.

Recall is an active process. When people are asked to remember a set of words, recall is better if they are given a task that leads them to generate the list on their own than if they are asked simply to study the list (Slamecka and Graf, 1978). The benefits of generating one’s own knowledge are general and include the memory benefits of elaborating the to-be-learned information with one’s own experiences (Hirshman and Bjork, 1988; Stein and Bransford, 1979). Indeed, learners are often better off when they think partially through a topic before being told about it than when they are told about the topic before thinking (Schwartz and Bransford, 1998).

The benefits of generating one’s own knowledge apply to pictures, graphics, and many other types of spatial representations. For example Wills et al. (2000) asked undergraduate students to study complex sentences and either to use a picture that was provided to help them understand the sentences or to generate their own picture. Students showed better comprehension and later recall when they generated their own pictures. The production of spatial representations—diagrams, flow charts, and concept maps—can create spatial schemas that link related items of information and can provide a way to interrogate one’s memory.

Reinstatement and generation techniques can be used in teaching spatial thinking. Reinstatement techniques can facilitate classroom learning, especially in the recall of science experiments, laboratory demonstrations, and other classroom or field experiences in perceptually rich contexts.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement