was the innovative industrial solution.4 Schneider reported that instrumentation accounted for about a third of the entire NPOESS budget, which was development oriented.

Moderator Newman asked Schneider how the message had got out about the success of the NPOESS model of agency collaboration and cooperation? The answer was to have a lot of community interaction and numerous briefings, as well as special sessions at relevant programmatic, science, and engineering conferences and symposia. He was also asked what NPOESS’s international role was, especially in light of existing international polar-orbiting satellites. NPOESS will be bringing in data from European systems and vice versa, but there is no exchange of instrumentation. The European group sits on the NPOESS advisory group, which meets quarterly.

Christopher Stevens, manager of the NASA New Millennium Program (NMP) at the Jet Propulsion Laboratory (JPL), provided the final perspective.5 The objective of NMP is to accelerate the infusion of revolutionary technologies into NASA science missions by validating them in space, to provide new and lower cost capabilities for Earth and space science missions and reduce the risks to the first users. The NMP is similar to the proposed Code T Technology Maturation program, but the NMP is sponsored by the Earth (Code Y) and Space Science (Code S) Enterprises. The NMP helps fill the gap between low-TRL work and the science missions. NMP was set up when the Earth and space science programs realized that the technology capabilities needed to accomplish Earth and space science goals would not be available without further investment. Approximately $35 million of the annual budget for the NMP comes from the Earth Science Enterprise and $80 million, from the Space Science Enterprise.

When discussing the relationship between ASTRA and NMP, Stevens noted that the technology validation projects in the NMP program fit the ASTRA model in the “applications pull” area. The NMP program conducts two types of technology flight tests: (1) stand-alone subsystem validations and (2) integrated system validations. He spoke of multiple applications and potential dual use opportunities as well as NMP’s education and outreach efforts.

A 5- to-8-year period before launch was suggested as the time typically needed for mid-TRL technologies to be developed. A 10-year period for technology development from lower TRLs was mentioned, and a shorter period, 3 to 5 years, was suggested for subsystems.

Someone asked how the NMP fits into NASA’s ASTRA or a Moon-Mars initiative. Stevens responded that there is no formal relationship. It was his understanding that there were discussions at NASA about whether the NMP should be moved to Code T. When Code T was formed, NASA decided that was not appropriate to move NMP into the new organization. NMP is specifically addressing the needs of Codes S and Y, but the attributes and processes of NMP may be suitable to Code T’s plans, particularly where the capabilities needed by Code T for robotic exploration of the Moon and Mars are also needed for future space and Earth science missions. Macauley reminded everyone that Deep Space 1’s original objective was to validate technologies. Later, the emphasis

4  

SafetyNet is a data routing and retrieval architecture built by Northrop Grumman Space Technology. Information available at <http://www.st.northropgrumman.com/media/SiteFiles/mediagallery/factsheet/NPOESSSafetyNetFactSheet.pdf> accessed March 17, 2004.

5  

Christopher Stevens, NASA Jet Propulsion Laboratory, “New Millennium Program: Technology as a Driver for Capability Transformation,” presented to the steering committee on February 23, 2004.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement