The first section of this chapter summarizes the different points of view on the issue of control by grouping stakeholders into broad categories. The ideas come from statements that workshop participants made about themselves and about their communities. The section includes the international interconnections within the life-science community and implications for the control of genome information; this discussion is based on the presentations of Lord May of the Royal Society, Rino Rappuoli of Chiron-Italy, and Michael Morgan of the Wellcome Trust and on input from various other participants during the workshop. The second section of the chapter discusses ways that genome data could be categorized and whether any individual category of data might present an enhanced threat; this was the subject of discussion for much of the afternoon portion of the workshop. The third section identifies potential mechanisms for controlling data, a topic that came up repeatedly during the workshop. The fourth and final section of the chapter summarizes the arguments made for and against instituting restrictions on data; it draws on discussions throughout the workshop, especially the two breakout sessions on the security and scientific effects of releasing and restricting data. Two major foci were the feasibility and desirability of instituting registration requirements for access to genome databases.


The crux of the dual-use dilemma in the life sciences is this: It is difficult or impossible to limit the application of ideas and data generated through research to beneficial purposes. At the broadest level, all humanity has a stake in how scientists and policy-makers confront the dual-use nature of modern life-science research. The problems posed by naturally occurring emerging and re-emerging infectious diseases—such as HIV/ AIDS, influenza, multiple-drug resistant tuberculosis, foot and mouth disease, and SARS—present difficult challenges to global health and security and to the global economy. Scientific research has the potential to deliver powerful new tools to meet the challenges that infectious diseases present. The consequences of retarding scientific progress must be considered in any decision to restrict access.

At the same time, the growing power of the life sciences permits humanity to manipulate nature in new ways, including, in theory, the creation of pathogens with destructive properties that would be unlikely to emerge naturally. For example, the Australian scientists who published the 2001 finding that interleukin-4 (IL-4) increases mousepox virulence made that finding as part of a project to engineer a mousepox virus variant that would induce the mouse immune system to attack proteins displayed

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement