FIGURE 4-3 Wetland loss and the long-run market equilibrium of an open-access fishery. The effect of a fall in wetland area is to shift the long-run equilibrium supply curve of an open access fishery to the left. The result is a decline in fish harvest hA. The loss in consumer value will be greater if the demand curve is more inelastic (area PABEF) than elastic (area PABCD). SOURCE: Adapted from Barbier et al. (2002).

Florida Gulf Coast marshlands on the supply-and-demand relationships of the commercial blue crab fishery. They demonstrated that an increase in wetland area increases the abundance of crabs and thus lowers the cost of catch. The value of the wetlands’ support for the fishery—which in this case is equivalent to the value of increments to wetland area—can then be imputed. Freeman (1991) has extended Ellis and Fisher’s approach to show how the values imputed to wetlands are influenced by market conditions and regulatory policies that affect harvesting decisions in the fishery. In assuming an open-access crab fishery supported by Louisiana coastal wetland habitat, the value of an increase in wetland acreage from 25,000 to 100,000 acres could range from $47,898 to $269,436. If the fishery is optimally managed, the increase in coastal wetland is valued from $116,464 to $248,009.

More “dynamic,” or long-term, approaches to analyzing habitat-fishery linkages have also been developed (e.g., see Barbier and Strand, 1998; Barbier et al., 2002; Kahn and Kemp, 1985; McConnell and Strand, 1989). For example, in their case study of valuing mangrove-shrimp fishery linkages in the coastal regions of Campeche, Mexico, Barbier and Strand (1998) analyzed the effects of a change in mangrove area in terms of influencing the long-term equilibrium of an open-access fishery (i.e., one in which there are no restrictions on additional fishermen entering to harvest the resource). Their results indicate that the economic losses associated with mangrove deforestation appear to vary with long-term management of the open-access fishery. During the first two years of the simulation (1980-1981), which were characterized by much lower levels of fishing effort and higher harvests, a 1 km2 decline in mangrove area was esti-



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement