• How should contaminants be selected for regulation?

  • How should MCLGs be established?

  • How should MCLs be established?

  • What constitutes the best science?

  • What should be the role of source water protection?

  • How can compliance be ensured?

Since enactment of the SDWA in 1974, great progress has been made in drinking water quality and regulation in the United States. It seems now that only the most difficult issues remain—protecting sensitive populations, achieving sustainable water systems, providing affordable drinking water for small systems, avoiding risk-risk trade-offs, and controlling emerging waterborne pathogens, to name a few. The need for creative thinking and innovation in drinking water science, policy, regulation, and legislation has never been greater.

ARE RECENT ADVANCES IN SCIENCE AND TECHNOLOGY ABLE TO MEET THE HEALTH CHALLENGES OF PROVIDING SAFE DRINKING WATER?

Jeffrey K.Griffiths

Narrowly, the provision of safe drinking water is dependent upon being able to (1) recognize the health risk of hazardous substances or microbes present in drinking water, (2) monitor drinking waters for the presence of these hazards, and (3) remove these hazards.

Challenges to providing safe drinking water include a diminishing supply of usable water, often most acute in areas with rapidly growing populations; an increasing need to reuse wastewaters that include sewage and industrial contaminants; and the demographic constraint of an aging population with increased relative susceptibility to drinking water contaminants. Specific populations, such as people with HIV infection or AIDS, are especially sensitive to emerging pathogens that were essentially not recognized in the pre-AIDS era. Predictions regarding climate change strongly suggest that less water will be available over time in multiple regions of North America. Industrial food production, via concentrated animal feeding operations (CAFOs), is increasingly cited as a source of animal pathogens that place humans at risk of zoonotic infection. Industrial production of novel chemical contaminants through



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement