the TOP500 list soon,3 it is likely to continue providing significantly better performance than competing systems on climate codes and the other applications it runs. (At present, the ES is 5 to 25 times faster than large U.S. systems on the various components of climate models used at NCAR.) IDC estimates that in the last few years, the North America, Europe, and the Asian-Pacific regions each purchased about one-third of the total dollar value of the capability systems sold. Another trend that has been much in evidence in recent years is the ability of many countries to build top-performing systems using commodity parts that are widely available. This reduces the usefulness of export restrictions and enables many countries to reduce their dependence on the United States and its allies for supercomputing technology. China is vigorously pursuing a policy of self-sufficiency in supercomputing.

Next, the committee presents highlights of supercomputing activities in various countries.


The committee found both similarities and differences in supercomputing in Japan and in the United States.4


In many areas the issues and concerns about HPC are broadly similar in Japan and in the United States. HPC continues to be critical for many scientific and engineering pursuits. Many are common to the United States and Japan, for example, climate modeling, earthquake simulation, and biosystems. However, Japan does not have the kind of defense missions, such as stockpile stewardship, that have historically been drivers for U.S. supercomputing.

The HPC community is small in both countries relative to the science and engineering community overall and may not have achieved a critical mass—in both countries it is hard to attract top young researchers with the needed skills in simulation and high-performance computing. The


On September 29, 2004, IBM announced that the Blue Gene/L system, which is being assembled for LLNL, had surpassed the performance of the Earth Simulator according to the standard Linpack benchmark. On October 26, 2004, Silicon Graphics announced that the Columbia system installed at NASA Ames had surpassed the Earth Simulator. As a result, it is expected that the Earth Simulator will lose the top spot on the November 2004 TOP500 list.


The subcommittee participated in a 1-day joint NAE–Engineering Academy of Japan forum and visited six supercomputing sites in Japan (see Appendix B for a complete list of sites and participants).

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement