National Academies Press: OpenBook

Facilitating Interdisciplinary Research (2005)

Chapter: Appendix D From Interdiscipline to Discipline

« Previous: Appendix C Convocation Program and Speaker Biographies
Suggested Citation:"Appendix D From Interdiscipline to Discipline." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. doi: 10.17226/11153.
×

D
From Interdiscipline to Discipline

The relationship between interdisciplinary and disciplinary research is dynamic. Researchers in one discipline may follow a question to the interface of another discipline and return “home” with new knowledge. If the journey is especially productive, it may cross one or more intellectual frontiers to produce a new discipline.

As discussed in Chapter 2, this process of interdisciplinarity has been propelled by a number of “drivers.” For example, the driver of generative technologies may be said to have given rise to partnerships between biology and chemistry more than two centuries ago after Lavoisier’s studies of combustion and Priestley’s discovery of the presence of oxygen in the air. And the partnerships coalesced over the years in the new “interdiscipline” of biochemistry, which emerged with its own distinctive character and is now generally considered a discipline.

In most cases, emerging disciplines become mature when they attract a critical mass of participants whose increasing numbers and productivity warrant a new set of societies, journals, and academic departments. The founders of the distinct discipline, who were usually trained in one of its “parent” disciplines, may then take the logical, although often discomfiting step, of moving into a new professional identity and culture.

The purpose of this appendix is to illustrate, by example, how interdisciplinary partnerships have evolved into new disciplines and how these new disciplines have led to the creation of a new breed of interdisciplinary professional society since World War II. This issue is discussed further in Chapter 7 on the role of professional societies in interdisciplinary research.

Suggested Citation:"Appendix D From Interdiscipline to Discipline." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. doi: 10.17226/11153.
×

GEOBIOLOGY

The recent emergence of geobiology into a mature field was preceded by a long gestation period, beginning with the pioneering studies of the earth’s surface by James Hutton more than two centuries ago. By the beginning of the 20th century, the great Russian polymath Vladimir Vernadsky focused more explicitly on the influence of the biosphere (including human activities) on geological processes, and the term geobiology was first used soon afterward by the Dutch biologist Lourens Bass Becking in 1934. Most recently, the extensive writings of the independent scientist James Lovelock served to highlight the role of life in influencing the surface environment of the earth.1

Awareness of the importance of geobiology was widened by technologies that revealed new kinds of organisms that flourish in remote and extreme environments. Discoveries of how microbes contribute to geochemical reactions or react with the geosphere in novel ways have stirred the excitement of many who seek solutions to a wide array of environmental and resource challenges. Among the existing disciplines that have fed the growth of geobiology are geochemistry, geohydrology, oceanography, microbiology, environmental studies, biogeochemistry, ecology, molecular biology, genomics, paleobiology, and mineralogy.

The interaction of biological and geological thinking developed over many decades, but the formal birth of the new field happened quickly. It was stimulated in part by the report of a colloquium held in December 2000 by the American Academy of Microbiology, which formally described geobiology as “research that attempts to understand the interface between the biosphere and the geosphere.” The report was followed by the decision of the Geological Society of America to create the new Geobiology and Geomicrobiology Division in May 2001 and then by the decisions of Elsevier Science to publish Virtual Journal of Geobiology in 2002 and of Blackwell Publishing to launch the new journal Geobiology in 2003. The University of Southern California Wrigley Institute for Environmental Studies held an “International Training Course in a Rapidly Evolving Field: Geobiology” in June 2004.2

1  

Lovelock’s assertion that the “planet Gaia” is a “self-regulating” system has stirred controversy, but his elucidation of biosphere-geosphere interactions is nonetheless extensive.

2  

See the colloquium report “Geobiology: Exploring the Interface Between the Biosphere and the Geosphere, 2001, at http://www.asm.org/Academy/index.asp?bid=2132.

Suggested Citation:"Appendix D From Interdiscipline to Discipline." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. doi: 10.17226/11153.
×

NEUROSCIENCE

Neuroscience has been defined as the interdisciplinary investigation of the nervous system and behavior.3 Thomas Willis, an English anatomist, provided the first detailed description of brain structure in the middle 1600s, and 200 years later scientists began to correlate structures with functions. By the end of the 19th century, brain research institutes began to formalize research activity in the structure of universities.

Until a few decades ago, most scientists engaged in brain research identified themselves with anatomy, physiology, psychology, biochemistry, and other disciplines. Then, in the 1960s, a “critical mass” of brain researchers around the world felt the need to focus their activities on a single framework and to formalize neuroscience as a discipline. In response, the International Brain Research Organization was founded in 1960 to promote cooperation among the world’s scientific resources for research on the brain. The British Brain Research Association was founded in 1968; it is now the British Neuroscience Association. In the United States, the Society for Neuroscience was founded in 1969, with its official organ, the Journal of Neuroscience. Membership in the US society grew from 1,000 in 1970 to about 34,000 in 2000.

In this new discipline, neuroscientists are integrating a variety of perspectives to gain insights into fundamental questions about the nervous system in health and disease. According to a recent study, “Neuroscience is a clear example of a discipline of today arising from interdisciplinary approaches of the past.”4 Like other emerging fields, it interacts with other disciplines and techniques as needed, including informatics and molecular biology. It has been invigorated by new technologies, such as the use of positron emission tomography to image blood flow and magnetic resonance imaging to look at neural structures. Its growth has been so rapid that some of its own subdisciplines, such as cognitive neuroscience, are now acquiring disciplinary status.

SUSTAINABILITY SCIENCE AND ENGINEERING

In contrast with the previous two examples, the concept behind sustainability science is relatively young, having evolved largely out of the environ-

3  

Frank, R. J., Marshall, L. H., and Magoun, H. W. “The Neurosciences,” In Bowers, J. Z. and Purcell, E. F., Advances in American Medicine: Essays at the Bicentennial, Vol. 2, Josiah Macy Jr. Foundation, 1976.

4  

Institute of Medicine, Bridging Disciplines in the Brain, Behavioral, and Clinical Sciences, Washington, D.C.: National Academy Press, 2000.

Suggested Citation:"Appendix D From Interdiscipline to Discipline." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. doi: 10.17226/11153.
×

mental movement of the 1960s and 1970s. That decade saw growth in the awareness of a linked series of environmental problems, including resource depletion, population growth, and pollution of air, water, and soil.

Initially, environmental studies focused on issues of waste management, especially on air, water, and soil pollution. The strategy for treating pollutants focused on “end-of-pipe” techniques and other local measures. As it became clear that end-of-pipe measures were merely palliative, they evolved toward the broader activities of pollution prevention, conservation, and social policies.

By 1987, a report from the UN-mandated Brundtland Commission could describe “sustainable development” as development “which meets the needs of the present without compromising the ability of the future to meet its needs.”5 That report served as a catalyst for the 1992 UN Conference on Environment and Development (the “Earth Summit”) in Rio de Janeiro. The evidence delivered at the conference made it clear that it was necessary “to integrate the physical and social science disciplines with engineering to address the ecological, economic, social, and political processes that determine the sustainability of natural and human life cycles and activities.”6 Thus arose the need to develop an interdisciplinary infrastructure, termed sustainability science and engineering. The broad goals of this field are to define major threats to sustainability, find accurate indicators of change (from children’s birth weights to atmospheric chemistry), and explore promising opportunities for circumventing or mitigating environmental threats.

Although it may be premature to define this field as a stand-alone discipline,7 some researchers have articulated a vision of a “metadiscipline.” For example, one paper defines sustainability as “the design of human and industrial systems to ensure that humankind’s use of natural resources and cycles do not lead to diminished quality of life due either to losses in future economic opportunities or to adverse impacts on social conditions, human health, and the environment.”8 It remains to be seen whether an enterprise of such breadth is a discipline in the traditional sense or whether researchers are leading us toward a new concept of the discipline.

5  

World Commission on Environment and Development, Our Common Future, New York: Oxford University Press, 1987.

6  

National Research Council, Our Common Journey: A Transition Toward Sustainability, 1999.

7  

Clark, W. C. and Dickson, N. M. “Sustainability science: The emerging research program,” Proceedings of the National Academy of Sciences, 100(14):806, 2003.

8  

Mihelcic, J. R. et al., “Sustainability Science and Engineering: The Emergence of a New Metadiscipline,” Environmental Science and Technology 37(23):5315, 2003.

Suggested Citation:"Appendix D From Interdiscipline to Discipline." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. doi: 10.17226/11153.
×

CONCLUSION

Perhaps the most common driver of interdisciplinarity toward the emergence of new disciplines is the sheer complexity of nature, which draws researchers toward the next important question, moving toward interfaces with other disciplines and partnerships with colleagues in them. In the three examples above, the intellectual journey seems to be natural and even inevitable for those seeking answers to the questions of science and engineering. The more institutions and funding organizations can help these pioneer investigators along their way, the greater the intellectual and practical rewards of research are likely to be.

Suggested Citation:"Appendix D From Interdiscipline to Discipline." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. doi: 10.17226/11153.
×
Page 249
Suggested Citation:"Appendix D From Interdiscipline to Discipline." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. doi: 10.17226/11153.
×
Page 250
Suggested Citation:"Appendix D From Interdiscipline to Discipline." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. doi: 10.17226/11153.
×
Page 251
Suggested Citation:"Appendix D From Interdiscipline to Discipline." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. doi: 10.17226/11153.
×
Page 252
Suggested Citation:"Appendix D From Interdiscipline to Discipline." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. doi: 10.17226/11153.
×
Page 253
Next: Appendix E Survey of Institutions and Individuals Conducting Interdisciplinary Research »
Facilitating Interdisciplinary Research Get This Book
×
Buy Paperback | $52.00 Buy Ebook | $41.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Facilitating Interdisciplinary Research examines current interdisciplinary research efforts and recommends ways to stimulate and support such research.

Advances in science and engineering increasingly require the collaboration of scholars from various fields. This shift is driven by the need to address complex problems that cut across traditional disciplines, and the capacity of new technologies to both transform existing disciplines and generate new ones. At the same time, however, interdisciplinary research can be impeded by policies on hiring, promotion, tenure, proposal review, and resource allocation that favor traditional disciplines.

This report identifies steps that researchers, teachers, students, institutions, funding organizations, and disciplinary societies can take to more effectively conduct, facilitate, and evaluate interdisciplinary research programs and projects. Throughout the report key concepts are illustrated with case studies and results of the committee’s surveys of individual researchers and university provosts.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!