(a regional association of the U.S. Affiliated Pacific Islands governments), held a scoping meeting in early 1992. Organized and driven by actors representing the continuum from climate research, social science research, and potential users of climate forecasts, the meeting brought together a range of perspectives to describe the current state of the science, but more importantly, to ask the question: How could forecasts be produced so that they might be useful to managers in the region? This scoping work led to the birth, in 1994, of the Pacific ENSO Applications Center (PEAC).4 In addition to the original partners, PEAC included the participation of the NOAA National Weather Service/Pacific Region, the University of Hawai’i/School of Ocean and Earth Science and Technology, and the University of Guam/Water and Energy Research Institute. PEAC’s mission is to conduct research and provide seasonal to interannual climate forecasts and climate information products for the benefit of the U.S. Affiliated Pacific Islands and the islands’ various emergency management economic, environmental, and human services sectors.

3. The U.S. Pacific Northwest

In the Pacific Northwest, the system of weather research, forecasting, and applications is strong, whereas the system for climate is at a much earlier level of development. In the early to mid-1990s, prior to the establishment of the Climate Impacts Group at the University of Washington, the region’s climate forecast system was relatively decentralized. The National Weather Service’s River Forecast Center issued water supply volume forecasts for several points in the Columbia and Snake River basins. These forecasts were coordinated with the Natural Resources Conservation Service, the U.S. Army Corps of Engineers, and the Bureau of Reclamation. These forecasts were then and still are the most commonly used in the Columbia River Basin management system, and the River Forecast Center remains the dominant forecast provider. However, these forecasts are primarily resource forecasts. Whereas the forecast providers do use the forecasts issued by NOAA’s Climate Prediction Center/National Center for Environmental Prediction, most stakeholders who could benefit from these climate forecasts are still not using them in 2004, even though their awareness of these forecasts is now much greater. Barriers to forecast use include perceptions of low forecast ability, a predilection for deterministic rather than probabilistic forecasts, and a wide variety of institutional hurdles.

In July 1995, OGP established a pilot program at the University of Washington—the Climate Impacts Group—which became the precursor of what is now known as the Regional Integrated Sciences and Assessment (RISA) program. The role of the Climate Impacts Group was to conduct research on the impacts of climate variability and the projected impacts of climate change on the Pacific Northwest across four sectors: hydrology/water resources, forest ecosystems, aquatic ecosystems, and coastal zones; to disseminate the results of this research widely; to work in partnership with a wide range of stakeholders; and particularly to focus on the applications of seasonal to interannual climate forecasts. It was also expected that, over time, the Climate Impact Group would produce a steady stream of decision support tools for stakeholders. As a result of the Climate Impact Group’s efforts, there is now greater awareness among natural resource managers in the region about the natural climate variations that underlie variations in regional resources and how this knowledge can be used to improve management. Subtle changes in management approaches are now beginning to surface relative to water resources, forest fire, salmonids, and coastal emergency preparedness.

4. Integrated Climate Prediction in Northeast Brazil

Ceará is an economically stressed, semiarid state on the northeastern coast of Brazil. According to the 2000 census, about 49 percent of its 7.42 million inhabitants live in extreme poverty, making less than US$30 per month per capita. This includes 76 percent of rural inhabitants and 58 percent of urban inhabitants. The interior of the state, or the sertão, normally gets approximately 600 millimeters of rain

4  

See <http://lumahai.soest.hawaii.edu/Enso/> for more information.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement