to believe that developments as interesting as these will continue in the decades to come, especially if magnets are built that deliver higher fields than those available today. For instance, discoveries made using pulsed-field magnets, which operate at very high fields and are equipped with instruments that take full advantage of advances in electronics, could take research in fruitful new directions that cannot now be anticipated.

U.S. High-Field Efforts in the International Context

Conclusion. The United States is a leader in many areas of high-field science and technology, but further investment will be required to make it competitive in some critical areas.

There are many indicators of the strength of the U.S. effort. For example, condensed-matter and materials scientists from other parts of the world routinely travel to the National High Magnetic Field Laboratory (NHMFL) to perform experiments that they are unable to do at home, but U.S. scientists seldom travel abroad for that purpose. An important corroborating observation is found in the European Science Foundation’s 1998 report The Scientific Case for a European Laboratory for 100 Tesla Science.1 In that report, a panel of experts was charged with investigating and proving the users’ scientific case for such a world-class laboratory. The report concluded that the scientific case for a 100-T laboratory was compelling and that, in fact, one of the prime motivations was “to be competitive with laboratories elsewhere, particularly in the United States and Japan.” In addition, the superconducting magnets being installed in the Large Hadron Collider (LHC) at CERN, which were built in Europe, as well as those contemplated for the International Thermonuclear Experimental Reactor (ITER), depend on magnet technology developed in the United States, as do the magnets installed in several other user facilities overseas. However, in the area of NMR, which is a major component of high-field science, the United States is competitive but not dominant.2 About half of the instrumentation used by NMR spectroscopists in the

1  

European Science Foundation, The Scientific Case for a European Laboratory for 100 Tesla Science, ESF Studies on Large Research Facilities in Europe, 1998. Available online at http://www.esf.org/publication/109/100T.pdf.

2  

The issues of (and case for) U.S. international leadership in key research areas and among international leaders in important areas of science and technology is best described in a 1993 report from the National Academies, Science, Technology, and the Federal Government: National Goals for a New Era, Washington, D.C., National Academy Press, 1993.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement