National Academies Press: OpenBook

Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering (2005)

Chapter: ENGINEERING AND ENTERTAINMENTIntroduction--Chris Kyriakakis

« Previous: Small-Scale Processes and Large-Scale Simulations of the Climate System--Bjorn B. Stevens
Suggested Citation:"ENGINEERING AND ENTERTAINMENTIntroduction--Chris Kyriakakis." National Academy of Engineering. 2005. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering. Washington, DC: The National Academies Press. doi: 10.17226/11220.
×

ENGINEERING AND ENTERTAINMENT

Suggested Citation:"ENGINEERING AND ENTERTAINMENTIntroduction--Chris Kyriakakis." National Academy of Engineering. 2005. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering. Washington, DC: The National Academies Press. doi: 10.17226/11220.
×

This page intentionally left blank.

Suggested Citation:"ENGINEERING AND ENTERTAINMENTIntroduction--Chris Kyriakakis." National Academy of Engineering. 2005. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering. Washington, DC: The National Academies Press. doi: 10.17226/11220.
×

Introduction

CHRIS KYRIAKAKIS

University of Southern California

Los Angeles, California

Entertainment technology has evolved over the last 100 years from hand-cranked film cameras with no sound to all-digital picture capture and multichannel surround sound. Most of the engineering innovations associated with entertainment have been fueled by the film industry’s need to surpass itself every few years. In recent years, entertainment has changed dramatically—from a large group activity available only in a movie theater to an activity that can be enjoyed by a family in a home theater or even an individual with advanced portable entertainment equipment.

Innovations have not only ensured the high quality of the experience but also provided new directions for the creators of entertainment content and the people who enjoy it. The papers in this section focus on three areas of innovation: picture, sound, and actors. At first glance, these three seem to be very traditional. But each them holds a key to advancing entertainment to the next level.

Anyone who has seen a summer blockbuster is aware of the dramatic improvement in computer-generated realism. Visual-effects supervisors now report that that they can bring even the most challenging visions of film directors to the screen. The only questions are time and cost. The technology behind the more realistic computer graphics (CG) techniques is simulations of light traveling in a scene and reflecting off of and through surfaces. These techniques—some developed recently and some originating in the in the 1980s—are being applied to visual-effects processes by CG artists who have found ways to channel the power

Suggested Citation:"ENGINEERING AND ENTERTAINMENTIntroduction--Chris Kyriakakis." National Academy of Engineering. 2005. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering. Washington, DC: The National Academies Press. doi: 10.17226/11220.
×

of these new tools. In “Capturing and Simulating Physically Accurate Illumination in Computer Graphics,” Paul Debevec describes how new techniques are bringing unimaginable realism to the screen, creating visual elements that are becoming almost indistinguishable from reality.

Bill Gardner’s presentation, “Spatial Audio Reproduction: Toward Individualized Binaural Sound,” focuses on spatial perception, a critical aspect of sound reproduction. While the audio industry remains focused on advances that can improve audio quality incrementally, Gardner’s work is approaching a new frontier in sound. We perceive the direction, distance, and size of sound sources with our ears. But the accurate reproduction of the spatial properties of sound remains a challenge. In this presentation, the technologies for spatial sound reproduction are reviewed and future directions, with a focus on the promise of individualized binaural technology, are explored.

The third presentation in this section, “Designing Socially Intelligent Robots,” by Cynthia Breazeal, addresses advances in entertainment technology, specifically as it applies to robots. Breazeal interprets “entertainment” in a broad sense that encompasses personal-service robots, for which there is a quickly emerging market. Breazeal raises questions about the design of robots that can successfully interact in the daily lives of ordinary people. Beyond performing useful tasks, personal robots must be natural and intuitive for the average consumer to interact, communicate, work with, and teach new skills. To address these challenges, new areas of inquiry, such as human-robot interaction (HRI) and social robotics, are emerging. Social and emotional intelligence will be fundamental to the design of personal-service robots. After all, personal robots should not only be useful to their human users, but people should genuinely enjoy having their robots around.

Suggested Citation:"ENGINEERING AND ENTERTAINMENTIntroduction--Chris Kyriakakis." National Academy of Engineering. 2005. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering. Washington, DC: The National Academies Press. doi: 10.17226/11220.
×
Page 95
Suggested Citation:"ENGINEERING AND ENTERTAINMENTIntroduction--Chris Kyriakakis." National Academy of Engineering. 2005. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering. Washington, DC: The National Academies Press. doi: 10.17226/11220.
×
Page 96
Suggested Citation:"ENGINEERING AND ENTERTAINMENTIntroduction--Chris Kyriakakis." National Academy of Engineering. 2005. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering. Washington, DC: The National Academies Press. doi: 10.17226/11220.
×
Page 97
Suggested Citation:"ENGINEERING AND ENTERTAINMENTIntroduction--Chris Kyriakakis." National Academy of Engineering. 2005. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering. Washington, DC: The National Academies Press. doi: 10.17226/11220.
×
Page 98
Next: Capturing and Simulating Physically Accurate Illumination in Computer Graphics--Paul Debevec »
Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering Get This Book
×
 Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering
Buy Paperback | $52.00 Buy Ebook | $41.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

This volume includes 14 papers from the National Academy of Engineering's Tenth Annual U.S. Frontiers of Engineering Symposium held in September 2004. The U.S. Frontiers meeting brings together 100 outstanding engineers (ages 30-45) to learn from their peers and discuss leading-edge technologies in a range of fields. The 2004 symposium covered these four areas: engineering for extreme environments, designer materials, multiscale modeling, and engineering and entertainment. Papers in the book cover topics such as scalable mobile robots for deployment in polar climates, the challenges of landing on Mars, thin-film active materials, vascular tissue engineering, small-scale processes and large-scale simulations of the climate system, simulating physically accurate illumination in computer graphics, and designing socially intelligent robots, among others. Appendixes include information about the contributors, the symposium program, and a list of the meeting participants. The book is the tenth in a series covering the topics of the U.S. Frontiers of Engineering meetings.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!