However, progress in this area has been limited. Although these tools have proven extremely useful in the utility industry, their expense and complexity have limited their use in the industrial boiler sector. The ITP, with its familiarity with the variety of industrial combustion technologies and challenges, can identify broader issues and bring a number of industries and companies together in order to support projects. In addition, the combustion and sensors subprograms would both benefit from joint projects providing insight into combustion issues involving the complementary use of both sensors and CFD.

Retrofit Applications

Government funds are often used to support technologies that are too high risk to attract industry investment. The ITP’s combustion projects also tend to assume that approach, as specific project deliverables are typically new designs. However, the capital-intensive nature of combustion equipment often necessitates unusually long life spans and slow replacement. Although there are exceptions (e.g., burners), the subprogram is missing a significant opportunity with its limited support of retrofit applications. In addition, technology transfer is often accomplished more effectively and with less risk through the evaluation of new concepts in a retrofit application. By increasing emphasis on retrofit applications, the subprogram may also enhance the acceptance rate of developments relevant to new designs.

Mitigation of Carbon Dioxide Emissions

The contribution of EERE programs to the reduction of carbon dioxide (CO2) emissions through improvements in energy efficiency and the use of renewable energy sources is obvious. A number of developing technologies receiving worldwide attention seem particularly relevant to this subprogram and should be considered for support—for example, gasification and oxygen-fuel combustion with CO2 recycling.

Breadth of Emissions Control

The focus of the ITP’s emissions control efforts is largely on NOx and CO2. However, combustion plays a key role in the production and control of a number of other key pollutants, including SOx, mercury, acid gases, VOCs, and particulates. Further consideration of these pollutants, which are or could be regulated in industrial environments, may be important to the nation’s environment.

Waste Heat Recovery

Limited budgets require ITP personnel to define the core focus of each subprogram carefully. Although heat recovery equipment is related to combustion, the committee suggests that this area be pared from the combustion subprogram in order to apply subprogram resources more effectively.

Conclusions and Recommendations for the Combustion Subprogram

In general, the committee finds that the combustion subprogram is operating in a cost-effective manner and is well organized in terms of its overall strategy, individual project selection, and development and application of metrics. The ITP projects in this area have resulted in significant technical accomplishments. The majority of the committee’s recommendations for improvement involve prioritization, either external or internal to the subprogram:

  • Metrics should be clarified and a process developed for weighting the value to the program of emissions reductions in each specific pollutant, e.g., NOx, CO, SOx, mercury, acid gases, VOCs, and particulates.

  • Legacy projects that do not fit within the new decision-making methodology should be phased out.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement