FIGURE 1.4 Projection of the number of commercial nuclear power plants that will run out of needed space in their spent fuel pools in coming years if they do not add interim storage. These data, looking only at plants that did not already use dry cask storage, were provided to the Nuclear Regulatory Commission in 2000. SOURCE: USNRC (2001b).

disposal of spent nuclear fuel. But a nuclear waste repository is not expected to be in operation until at least 2010, and even then It will take several decades for all of the spent fuel to be shipped for disposal. Thus, onsite storage of spent fuel is likely to continue for at least several decades,

Power plant operators have made two changes in spent fuel storage procedures to increase the capacity of onsite storage. First, starting in the late 1970s, plant operators began to install high-density racks that enable more spent fuel to be stored in the pools. This has increased storage capacities in some pools by up to about a factor of five (USNRC, 2003b). Second, as noted above, many plant operators have moved older spent fuel from the pools into dry cask storage systems (see Chapter 4) or into other pools when available to make room for freshly discharged spent fuel and to maintain the capacity for a full-core offload,16

The original spent fuel racks, sometimes called “open racks,” were designed to store spent fuel in an open array, with open vertical and lateral channels between the fuel assemblies to promote water circulation. The high-density storage racks eliminated many of the channels so that the fuel assemblies could be packed closer together (FIGURE 1.5). This configuration does not allow as much water (or air circulation in loss-of-pool-cootant events) through the spent fuel assemblies as the original open-rack design.


Although not required by regulation, it is standard practice in the nuclear industry to maintain enough open space in the spent fuel pool to hold the entire core of the nuclear reactor. This provides an additionsl margin of safety should the fuel have to be removed from the reactor core in an emergency or for maintenance purposes.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement