National Academies Press: OpenBook

Nanotechnology for the Intelligence Community (2005)

Chapter: Executive Summary

« Previous: Preface
Suggested Citation:"Executive Summary." National Research Council. 2005. Nanotechnology for the Intelligence Community. Washington, DC: The National Academies Press. doi: 10.17226/11276.
×

EXECUTIVE SUMMARY

Since it was formed at the start of the Cold War with the National Security Act of 1947, the intelligence community (IC) has valued technological creativity, and this interest in technology led to generations of satellites and sensor systems that played a crucial role during that period of conflict. The Cold War is now over, and the IC faces a new set of problems, with greater emphasis on human intelligence, small groups of target individuals, nonstate entities, hard targets such as caves or underground bunkers, unconventional weapons, and regions to which it has very limited access. These new challenges are prompting the IC to rethink its requirements, to try to understand what science and technology tools are now-and will beavailable, and to develop a strategy for analyzing, identifying, and exploiting new technologies.

The current excitement about nanotechnology is based on its potential to bring evolutionary or, in some cases, revolutionary change to a number of fields. Worldwide, government investments in nanoscience and early-stage nanotechnology now exceed $3 billion per year. New capabilities will certainly emerge from this effort, with which the IC must stay current, both for offensive and defensive reasons. However, IC investments should be made with caution; some of the predicted capabilities appear to be realistic, while others are highly speculative or specious.

FINDINGS AND RECOMMENDATIONS

The committee's overall findings and recommendations are as follows:

Finding 1: True nanoscale devices (i.e., those with dimensions <100 nm) that take advantage of quantum and other phenomena offer exciting possibilities for future IC applications. These are currently much closer to the research laboratory than to the production line. Nevertheless, the broader field of "small" technologies (i.e., those undetectable to the naked eye) offers useful nearer-term capabilities.

Recommendation 1: Opportunities exist within a wide range of these small technologies (termed "smalltech" in this report) and are not exclusively in the category of true nanotechnologies. Promising areas of smalltech in which investments could yield useful capabilities in the next 3 to 5 years include, but are not limited to, the following:

  • Next-generation (nanoscale) electronics. This includes enhanced power sources that may take advantage of nanoscale material architectures for electrodes, battery separators, fuel cell catalysts, etc., as well as for the electronic devices themselves (e.g., moving to 50-nm circuit design rules, more efficient integrated circuits requiring less power to operate, and conformal organic electronics).

  • Technologies that take advantage of the special characteristics of nanostructured materials for sensing and measurement.

Finding 2: With the transition from the Cold War to the War on Terror, the IC faces a new set of challenges in covertly gathering intelligence on a range of new adversaries in new environments.

Suggested Citation:"Executive Summary." National Research Council. 2005. Nanotechnology for the Intelligence Community. Washington, DC: The National Academies Press. doi: 10.17226/11276.
×

Because of the IC's unique requirements, it is unlikely that the research necessary to exploit some opportunities will be fully funded by the private sector; instead some form of direct participation by the IC will be needed.

Recommendation 2: The IC should develop a strategy for exploiting smalltech areas of special promise mentioned in this report. The strategy should include:

  • Search for quasi-commercial technologies. In these technologies, the costs of development have already largely been paid, but the technologies have not become widely disseminated. Novel applications of dual-use technologies should also be sought.

  • Develop a methodology for producing non-commercial technologies for use by the IC. The IC may need its own fabrication facilities to produce smalltech items whose characteristics are not in demand in the commercial sector. It may also wish to facilitate the development of products of unique interest to the IC by small companies and organizations.

  • Develop a mechanism for monitoring and supporting enabling technologies for smalltech breakthroughs. These include materials science, modeling, and computational science, as well as tools for the manipulation, characterization, and fabrication of nanostructures.

  • Build up long-term, in-house technical expertise in areas related to smalltech; in the near term, seek expert advice regarding investments in areas of high technical risk or uncertainty. Examples include quantum computing and communication, molecular electronics, and intelligent sensor networks. This expert advice will also help the IC to avoid investing in "science fiction"1 areas such as nonbiological exponential manufacturing systems (assemblers).

Finding 3: To take advantage of the opportunities discussed in this report, the IC will have to address a variety of technical and economic issues. These include:

  • Defining its own role in the research, development, andfabrication of noncommercial technologies. For example, if the IC wishes to develop true nanoscale electronics, it will have to develop a strategy for managing the resources needed to make these devices.

  • Globalization. Government investment in nanotechnology is roughly equal in the United States, the European Union, and Japan; and China, Switzerland, and Israel have intensive programs as well. The IC will need a policy to deal with a situation in which it may be playing catch-up with other countries in some important applications of smalltech.

  • Industrial capabilities. To stay abreast of the development of the technology-and the capabilities that it provides-it will be necessary to actively monitor industrial R&D abroad.

  • Ultralarge databases. As nanoscale technology enables information storage to become very small and inexpensive, the ability to store very large amounts of information will soar.

1  

In this report, the Committee uses the phrase "science fiction" to describe those concepts that are sufficiently improbable, based on known or foreseeable science, that they do not justify investment at this time.

Suggested Citation:"Executive Summary." National Research Council. 2005. Nanotechnology for the Intelligence Community. Washington, DC: The National Academies Press. doi: 10.17226/11276.
×

TIMING OF TECHNOLOGY DEPLOYMENT

The timing for the deployment of these technologies will depend on a number of factors. Progress will undoubtedly be affected by the level of private effort for "dual use" technologies of interest to, and under development by, both government and private customers. The level of private effort is related to economic factors, including available alternatives, potential market, and opportunity costs. Economic analyses of this kind were beyond the scope of this study and conclusions dependent on them are not included in this report.

Technologies of use for intelligence activities may also be under internal development by the sponsor or other government agencies such as the Defense Advanced Research Projects Agency (DARPA) or the other branches of DOD. Other agencies such as the Department of Energy (DOE), the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and the National Oceanographic and Atmospheric Administration (NOAA) may be developing technologies that could also prove valuable to the mission of the intelligence community. Federal nano R&D efforts are organized and coordinated under the National Nanotechnology Initiative,2 established in 2000.3

While the Committee did receive some information about internal government technology development programs, these were illustrative rather than an exhaustive presentation of the federal government's technology portfolio. It is therefore inappropriate for the Committee to make definitive conclusions about the timing for the deployment of various technologies.

Nevertheless, it is possible to make some qualitative statements about the timing for the deployment of technologies discussed in this report. The Committee expects that quantum computing, molecular electronics, functional nanostructures (e.g., bio-nano supramolecules), and millimeter-scale intelligent distributed sensor networks will probably require longer development times than nano- and organic electronics, nanotaggants, and microbiotechnology based on microfluidic systems.

CONCLUSION

The nanoscale concept will be a unifying theme connecting science and technology globally, and given the amount of effort and money being devoted to it, it is very likely to produce important new technologies. Having said that it is important, however, it is also useful to get an idea of how important. While the field has produced several revolutionary research tools (e.g., scanning probe microscopes), the Committee remains skeptical of claims that nanotechnology will have the kind of broad, revolutionary impact that has characterized fields such as biotechnology or microelectronics.

2  

The NNI website is www.nano.gov

3  

National Academy Press, Small Wonders and Endless Frontiers: A Review of the National Nanotechnology Initiative, National Academy Press, Washington, D.C., 2002.

Suggested Citation:"Executive Summary." National Research Council. 2005. Nanotechnology for the Intelligence Community. Washington, DC: The National Academies Press. doi: 10.17226/11276.
×
Page 3
Suggested Citation:"Executive Summary." National Research Council. 2005. Nanotechnology for the Intelligence Community. Washington, DC: The National Academies Press. doi: 10.17226/11276.
×
Page 4
Suggested Citation:"Executive Summary." National Research Council. 2005. Nanotechnology for the Intelligence Community. Washington, DC: The National Academies Press. doi: 10.17226/11276.
×
Page 5
Next: Appendix A: Biographies of Committee Members »
Nanotechnology for the Intelligence Community Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The emergence of nanotechnology as a major science and technology research topic has sparked substantial interest by the intelligence community. In particular the community is interested both in the potential for nanotechnology to assist intelligence operations and threats it could create. To explore these questions, the Intelligence Technology Innovation Center asked the National Research Council to conduct a number of activities to illustrate the potential for nanotechnology to address key intelligence community needs. In 2004, workshop reports were issued on power systems and on positioning and sensing technologies. The final report provides an assessment of a wide range of additional technologies. The report also presents a series of findings and recommendations about areas of opportunities for the intelligence community and strategies for exploiting these opportunities.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!