Award. Dr. De Yoreo earned a B.A in physics from Colby College and an M.S. and Ph.D. in experimental physics from Cornell University.

Daniel H. Doughty received his Ph.D. in inorganic chemistry from the University of Minnesota in 1979. His thesis work explored the synthesis, characterization, and mechanistic study of organometallic complexes used in homogeneous decarboxylation catalysis. He studied various compounds, primarily in the family of rhodium phosphine complexes. He also studied at the Catholic University of America and the University of New Mexico, where he obtained a B.S. in chemistry and an M.S. in inorganic chemistry. Dr. Doughty currently is the manager of the Lithium Battery Research and Development Department, Sandia National Laboratories. This group has responsibility for developing advanced power sources, typically batteries and electrochemical cells based on lithium. Areas of expertise include various lithium chemistries (e.g., lithium-ion rechargeable batteries and lithium thionyl chloride cells and batteries). The group works on cutting-edge electrochemistry as well as advanced batteries and battery materials for defense and commercial applications. Prior to taking this assignment in 1992, he led the Inorganic Materials Chemistry Division for 7 years. This group has responsibility for advanced ceramic and glass materials as well as general inorganic chemistry. Specifically, the preparation of preceramic materials was a major effort that used sol-gel chemistry and other solution routes to ceramic and glass materials. Previous projects at Sandia National Laboratories involved organometallic chemistry, inorganic chemistry, nanostructured gold colloids, and the kinetics of gas-solid reactions. Prior to joining Sandia, Dr. Doughty worked for 3 years at 3M Company as a research chemist developing advanced inorganic photoconductors. Other areas of interest are general materials chemistry and processing, including colloid chemistry, superconducting ceramics, intercalation compounds, and oxide surface chemistry. Dr. Doughty received the DOE Award of Excellence in 1989 and is a member of the American Chemical Society, the Materials Research Society, ECS, and Phi Kappa Phi honorary fraternity. He has over 80 publications, holds three patents, and has co-edited four technical proceedings volumes.

Lawrence H. Dubois received an S.B. degree in chemistry from the Massachusetts Institute of Technology in 1976 and a Ph.D. in physical chemistry from the University of California, Berkeley, in 1980. Dr. Dubois then joined AT&T Bell Laboratories to pursue studies of the chemistry and physics of metal, semiconductor, and insulator surfaces; chemisorption and catalysis by materials formed at the metal-semiconductor interface; and novel methods of materials growth and preparation. In 1987, he was promoted to distinguished member of the technical staff and technical manager. His efforts broadened to include projects on polymer-surface interactions; adhesion promotion; corrosion protection; chemical vapor deposition and thin-film growth; optical fiber coating; synthesis, structure, and reactivity of model organic surfaces; and time-resolved surface vibrational spectroscopy. In 1993, Dr. Dubois moved to MIT Lincoln Laboratory as a senior staff scientist and was assigned to the Defense Advanced Research Projects Agency (DARPA). In that capacity, he established the Advanced Energy and Environmental Technologies Program and managed projects on the development and manufacturing of rechargeable batteries; high-performance, direct-methanol, and logistic-fuel-powered fuel cells; and the development of new, more environmentally sound manufacturing processes, environmental sensors, and waste destruction/reclamation

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement