The committee has not, however, discussed one of the more important sources of uncertainty in planning the successful defeat of hard and deeply buried targets or their contents (e.g., chemical or biological agents), that is, the need for precise intelligence about the type and configuration of a target.

To assess uncertainties, it is essential to identify the factors to which the model calculations (e.g., estimates of casualties for a given scenario) are more sensitive, as these factors offer the greatest potential contributions to uncertainties. Such factors include wind direction relative to the spatial distribution of a population and the degree to which populations are sheltered. Weather can be accounted for immediately prior to an attack, and sheltering can be accounted for by the timing of an attack (day or night) or perhaps by the issuing of a warning prior to an attack.

For example, based on the Hazard Prediction and Assessment Capability (HPAC) code calculations summarized in Chapter 6, the use of a nuclear EPW instead of an above-surface burst of equivalent military effectiveness (i.e., 25-fold larger yield) is expected to reduce casualties by factors of 2 to 7, 10 to 30, and 15 to 60 for Targets A (urban), B (rural), and C (rural), respectively (the values are for annual estimates of fatalities plus serious injuries). The equivalent military effectiveness coupling factor ranges between 15 and 25. In some of its calculations, the committee compares weapons differing in yield by a factor of 19 because these calculations had already been done and demonstrate the major features of importance. For a given weapon, however, the calculated casualties vary by factors of up to 4 to 8, depending on how well sheltered the population is assumed to be. In addition, Figures 6.9 and 6.11 show that estimates of total casualties can vary by factors as large as 101 to 102, depending on wind direction.1

The general conclusion derived from such comparisons is that the estimated reductions in casualties from a nuclear EPW as opposed to a surface burst of 25-times-higher yield are about 2 to 50 times larger for rural than for urban targets, but the casualty estimates are also more variable by factors of 1 to 2 orders of magnitude in absolute values for the rural than the urban targets. To be sure, all else being equal, use of a weapon with a lower yield is always expected to result in fewer casualties than use of a weapon with a higher yield, for a given set of weather conditions.


As discussed in each of the previous chapters, estimates of the effectiveness of as well as the casualties from the attack of a target take into account various sources of uncertainty, which can be summarized as follows.

Positive identification and reliable determination of the three-dimensional coordinates of relevant targets are the main sources of uncertainty considered in Chapter 2 (and again in Chapter 4). Adequate intelligence is required not only to identify those facilities that pose significant threats but also to determine the best modes of attack—which depend on the physical characteristics of the bunker (depth, size, distribution of chambers, hardness, and so on). Uncertainty about these variables affects estimates of target destruction rather than assessment of casualties.

Chapter 3 discusses the heterogeneous nature of low- to medium-strength natural rock formations and the challenge of designing an EPW capable of surviving the lateral and axial forces encountered during impact and penetration of such targets. During the development phase of a given EPW weapon, axial and lateral loading limits of the EPW are determined through extensive component-level shock tests and full-scale EPW system penetration tests. Analytical models are then used to estimate EPW axial and lateral loading for comparison with the EPW survivability limits to assess EPW functionality after the penetration event. The probability of successful penetration is the probability that the EPW will function after it penetrates the target. To determine the probability of successful penetration for a given EPW in a given target, a series of Monte Carlo calculations are run in which each impact parameter and

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement