design principles identified by the committee. These design principles can serve as a guide to research, development, selection, and implementation of high school science curricula. They can also guide improvements in the undergraduate science education of future teachers and professional development of current science teachers.

The committee envisions a future in which the role and value of high school science laboratory experiences are more completely understood. The state of the research knowledge base on laboratory experience is dismal but, even so, suggests that the laboratory experiences of most high school students are equally dismal. Improvements in current laboratory experiences can be made today using emerging knowledge. Documented disparities to access should be eliminated now.

Systematic accumulation of rigorous, relevant research results and best practices from the field will clarify the specific contributions of laboratory experiences to science education. Such a knowledge base must be integrated with an infrastructure that supports the dissemination and use of this knowledge to achieve coherent policy and practice.

Improving the quality of laboratory experiences available to U.S. high school students will require focused and sustained attention. By applying principles of instructional design derived from ongoing research, science educators can begin to more effectively integrate laboratory experiences into the science curriculum. The definition, goals, design principles, and findings of this report offer an organizing framework to begin the difficult work of designing laboratory experiences for the 21st century.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement