reported using about 20 percent of instructional time (about one day a week) for laboratory activities (Smith et al., 2002).

Survey data indicate that many current laboratory experiences are restricted in their settings and use of technology. For example, 50 percent of teachers responding to the 2000 survey indicated that they never took field trips. When the researchers compared national survey results in 1993 and 2000, they found (Smith et al., 2002, p. 43): “the use of computers in science lessons is striking in its lack of change. Even in 2000, less than 10 percent of science lessons included students using computers.”

In 2000, 45 percent of science teachers indicated that they never used laboratory simulations, 54 percent never engaged students in solving problems using simulations, 55 percent never engaged students in collecting data using sensors or probes, and 43 percent never engaged students in retrieving or exchanging data over the Internet. Data collected as part of the NAEP science assessment revealed similarly low levels of technology use in science classrooms (O’Sullivan et al., 2003). It appears that there is a considerable gap between the potential of computer technology to aid student learning in laboratory experiences discussed in Chapter 3 and the current reality.

Disparities in Laboratory Experiences

Variation in Course-Taking

There are racial/ethnic differences in enrollment in the advanced science courses that include more minutes of laboratory instruction. A study of student participation in science courses between 1982 and 1992 found that, at both points in time, black and Hispanic students took fewer science courses than white or Asian students (Quinn, 1996). During most of the 1990s, as high schools offered more science courses, an increasing proportion of students took more advanced courses, but racial/ethnic differences persisted. By 2000, Asians were more likely than students of any other ethnicity to have completed chemistry, physics, and other science courses usually taken after completing general biology, but there was no statistically significant difference in the percentage of white, black, and Hispanic high school graduates who had completed such courses (National Center for Education Statistics, 2004). High school graduates from urban and suburban schools were generally more likely than their counterparts from rural schools to have completed science courses beyond general biology. Participation in AP/IB biology and AP/IB chemistry increased with school size. In addition, as school poverty increased, fewer students completed courses in chemistry and physics (National Science Foundation, 2004).

Data on ethnic group participation in the AP examinations (which most students who enroll in AP courses take) provide indirect evidence of dispari-

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement