research programs aimed at defense and public health needs, high school science education also emphasized applications of scientific knowledge (Rudolph, 2002).


Changing Goals of Science Education

Following World War II, the flood of “baby boomers” strained the physical and financial resources of public schools. Requests for increased taxes and bond issues led to increasing questions about public schooling. Some academics and policy makers began to criticize the “life adjustment” high school curriculum, which had been designed to meet adolescents’ social, personal, and vocational needs. Instead, they called for a renewed emphasis on the academic disciplines. At the same time, the nation was shaken by the Soviet Union’s explosion of an atomic bomb and the communist takeover of China. By the early 1950s, some federal policy makers began to view a more rigorous, academic high school science curriculum as critical to respond to the Soviet threat.

In 1956, physicist Jerrold Zacharias received a small grant from NSF to establish the Physical Science Study Committee (PSSC) in order to develop a curriculum focusing on physics as a scientific discipline. When the Union of Soviet Socialist Republics launched the space satellite Sputnik the following year, those who had argued that U.S. science education was not rigorous enough appeared vindicated, and a new era of science education began.

Although most historians believe that the overriding goal of the post-Sputnik science education reforms was to create a new generation of U.S. scientists and engineers capable of defending the nation from the Soviet Union, the actual goals were more complex and varied (Rudolph, 2002). Clearly, Congress, the president, and NSF were focused on the goal of preparing more scientists and engineers, as reflected in NSF director Alan Waterman’s 1957 statement (National Science Foundation, 1957, pp. xv-xvi):

Our schools and colleges are badly in need of modern science laboratories and laboratory, demonstration, and research equipment. Most important of all, we need more trained scientists and engineers in many special fields, and especially very many more competent, fully trained teachers of science, notably in our secondary schools. Undoubtedly, by a determined campaign, we can accomplish these ends in our traditional way, but how soon? The process is usually a lengthy one, and there is no time to be lost. Therefore, the pressing question is how quickly can our people act to accomplish these things?

The scientists, however, had another agenda. Over the course of World War II, their research had become increasingly dependent on federal fund-

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement