several elements that are aligned with the goals of laboratory experiences, including knowledge of science concepts and the ability to apply this knowledge to describe, explain, and predict scientific phenomena; to understand scientific investigations; and to interpret scientific evidence and conclusions. About half of the test items asked students to perform tasks that reflected applications of scientific knowledge to life and health, the environment, and technology, while the other half were selected-response items (Organisation for Economic Co-Operation and Development, 2004).

Overall, then, results from large-scale national and international tests indicate that U.S. high school students have made little or no progress in mastery of science subject matter. Such mastery might be attained through laboratory experiences or through other forms of science instruction, including reading, lectures, discussion, and work with computers. The tests yield little information about the extent to which U.S. high school students may have attained other educational goals of laboratory experiences.

High School Science and Undergraduate Science Achievement

Policies aimed at improving science education are designed in part to prepare more U.S. high school students to enter higher education in science and engineering degrees, in preparation for careers in these fields. The U.S. science and technology workforce is aging, and global competition for skilled scientists and engineers is growing (National Science Foundation, 2004).

Many undergraduate science and engineering students do not complete their degrees. Among first-year students who declared majors in science and engineering in 1990, fewer than half had completed such a degree within five years. Among those who did not complete such a degree, approximately 20 percent of the students dropped out of college, and the remainder chose other fields of study (Huang, Taddese, and Walter, 2000).

Although students drop out of scientific and technology majors for a variety of complex, individual reasons, one important reason may be that their high school science education, including their laboratory experiences, did not adequately prepare them for undergraduate education. A survey conducted in 2002 indicated that 20 percent of first-year students planning to major in science and engineering fields needed remediation in mathematics, and nearly 10 percent reported needing remediation in the sciences (National Science Foundation, 2004). In a recent study of student scores from its widely used college admissions test, the American College Testing Service found that only 26 percent of students tested in 2003-2004 were ready to pass their first college biology course with a grade of “C” or better (American College Testing Service, 2004).

Little research is available on the role that laboratory experiences may



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement