Providing Laboratory-Focused Curriculum

Scientific agencies and professional societies support development and dissemination of high school science curricula. For example, NSF has supported the American Geological Institute, the American Chemical Society, and the American Institute of Physics in developing and disseminating high school science curricula that incorporate laboratory experiences (Biological Sciences Curriculum Study, 2001). Unlike traditional texts that may be accompanied by a separate laboratory manual, these curricula integrate laboratory experiences into the flow of instruction. The American Geological Institute is also producing a series of DVDs for use in schools that encompass the U.S. Geological Survey’s Global Geographic Information System database (Smith, 2004). The Association for Biology Laboratory Education publishes an online Labstracts newsletter that provides a variety of laboratory exercises (Association for Biology Laboratory Education, 2005). Although many of these laboratory exercises are provided by undergraduate educators, they can be used by high school teachers as well. Other scientific and teaching societies, in each of the science disciplines, are engaged in similar efforts.

Providing Laboratory Facilities and Equipment

One concrete way in which the scientific community can support high school laboratory experiences is through providing laboratory facilities and equipment. A few such efforts are described here.

San Mateo, California, high school teacher Ellyn Daugherty developed the San Mateo Biotechnology Career Pathway program at San Mateo High School with the help of many local biotechnology companies and foundations. Support from biotechnology firms helped in converting a shop classroom into a large, modern biotechnology classroom and in providing necessary equipment and supplies. Currently, 20 industry partners provide internships to advanced high school students enrolled in the program (Daugherty, 2004). These firms often hire graduates of the high school program, either directly after high school or after two to four years of further biotechnology or biology education.

With support from federal, state, and private agencies, scientists at higher education institutions in several states have designed and equipped mobile laboratories to serve students in schools that lack adequate science facilities (see Chapter 6). For example, during the 1999-2000 school year, the chemistry department at Virginia Polytechnic Institute (VPI) developed a mobile chemistry laboratory to help rural teachers and students respond to Virginia’s science standards and assessments, called the Standards of Learning (SOL). The chemistry department convened meetings of teachers from rural high



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement