age space for supplies. Schools with higher concentrations of non-Asian minorities and schools with higher concentrations of poor students are less likely to have adequate laboratory facilities than other schools. In addition to less adequate laboratory space, schools with higher concentrations of poor or minority students and rural schools often have lower budgets for laboratory equipment and supplies than other schools. These disparities in facilities and supplies may contribute to the problem that students in schools with high concentrations of non-Asian minority students spend less time in laboratory instruction than students in other schools.

The ability of schools to address the pressing need for improvements in laboratory teaching is constrained by the way many schools are organized. Often, administrators, teachers, and students become accustomed to routines in class schedules, teachers’ schedules, the allocation of space, supplies, and budgets, and teaching approaches. When such routines become rigid, they tend to reinforce existing knowledge and teaching practices, limiting teachers’ and administrators’ motivation and ability to try out new, more effective approaches to laboratory education. For example, routines in class scheduling and space allocation may limit science teachers’ ability or willingness to collaborate with other teachers in shared lesson planning, reflection, and improvement of laboratory lessons. Teachers and administrators who are accustomed to their existing science texts and laboratory manuals may not seek information about new science curricula that effectively integrate laboratory experiences, or they may hesitate to implement such curricula. Rigid school schedules may discourage teachers from adopting new, more effective approaches to laboratory instruction when such approaches require extended classroom time for students and teachers to discuss and reflect on the meaning of laboratory investigations.

Conclusion 5: The organization and structure of most high schools impedes teachers’ and administrators’ ongoing learning about science instruction and ability to implement quality laboratory experiences.

State Standards and Accountability Systems

Most states have developed science standards to guide instruction and large-scale assessments to measure attainment of those standards. These standards could be used as flexible frameworks to guide schools and teachers in integrating laboratory experiences into the flow of instruction in order to help students master science subject matter while also developing scientific reasoning and advancing other learning goals. However, this rarely happens. Instead, state and local officials and science teachers often see state standards as requiring them to help students master the specific science



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement