developed through research programs that tightly couple research, design, and implementation in an iterative process. The research programs are beginning to document the details of student learning, development, and interaction when students are given systematic support—or scaffolding—in carefully structured social and cognitive activities. Scaffolding helps to guide students’ thinking, so that they can gradually take on more autonomy in carrying out various parts of the activities. Emerging research on these integrated instructional units provides guidance about how to design effective learning environments for real-world educational settings (see Linn, Davis, and Bell, 2004a; Cobb et al., 2003; Design-Based Research Collective, 2003).

Integrated instructional units interweave laboratory experiences with other types of science learning activities, including lectures, reading, and discussion. Students are engaged in framing research questions, designing and executing experiments, gathering and analyzing data, and constructing arguments and conclusions as they carry out investigations. Diagnostic, formative assessments are embedded into the instructional sequences and can be used to gauge student’s developing understanding and to promote their self-reflection on their thinking.

With respect to laboratory experiences, these instructional units share two key features. The first is that specific laboratory experiences are carefully selected on the basis of research-based ideas of what students are likely to learn from them. For example, any particular laboratory activity is likely to contribute to learning only if it engages students’ current thinking about the target phenomena and is likely to make them critically evaluate their ideas in relation to what they see during the activity. The second is that laboratory experiences are explicitly linked to and integrated with other learning activities in the unit. The assumption behind this second feature is that just because students do a laboratory activity, they may not necessarily understand what they have done. Nascent research on integrated instructional units suggests that both framing a particular laboratory experience ahead of time and following it with activities that help students make sense of the experience are crucial in using a laboratory experience to support science learning. This “integration” approach draws on earlier research showing that intervention and negotiation with an authority, usually a teacher, was essential to help students make meaning out of their laboratory activities (Driver, 1995).

Examples of Integrated Instructional Units

Scaling Up Chemistry That Applies

Chemistry That Applies (CTA) is a 6-8 week integrated instructional unit designed to help students in grades 8-10 understand the law of conservation

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement