Some research indicates that typical laboratory experiences specifically focused on learning practical skills can help students progress toward other goals. For example, one study found that students were often deficient in the simple skills needed to successfully carry out typical laboratory activities, such as using instruments to make measurements and collect accurate data (Bryce and Robertson, 1985). Other studies indicate that helping students to develop relevant instrumentation skills in controlled “prelab” activities can reduce the probability that important measurements in a laboratory experience will be compromised due to students’ lack of expertise with the apparatus (Beasley, 1985; Singer, 1977). This research suggests that development of practical skills may increase the probability that students will achieve the intended results in laboratory experiences. Achieving the intended results of a laboratory activity is a necessary, though not sufficient, step toward effectiveness in helping students attain laboratory learning goals.

Some research on typical laboratory experiences indicates that girls handle laboratory equipment less frequently than boys, and that this tendency is associated with less interest in science and less self-confidence in science ability among girls (Jovanovic and King, 1998). It is possible that helping girls to develop instrumentation skills may help them to participate more actively and enhance their interest in learning science.

Evidence from Research on Integrated Instructional Units

Studies of integrated instructional units have not examined the extent to which engagement with these units may enhance practical skills in using laboratory materials and equipment. This reflects an instructional emphasis on helping students to learn scientific ideas with real understanding and on developing their skills at investigating scientific phenomena, rather than on particular laboratory techniques, such as taking accurate measurements or manipulating equipment. There is no evidence to suggest that students do not learn practical skills through integrated instructional units, but to date researchers have not assessed such practical skills.

Understanding the Nature of Science

Throughout the past 50 years, studies of students’ epistemological beliefs about science consistently show that most of them have naïve views about the nature of scientific knowledge and how such knowledge is constructed and evaluated by scientists over time (Driver, Leach, Millar, and Scott, 1996; Lederman, 1992). The general public understanding of science is similarly inaccurate. Firsthand experience with science is often seen as a key way to advance students’ understanding of and appreciation for the conventions of science. Laboratory experiences are considered the primary mecha-



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement