tions, students gained a more sophisticated understanding of the nature of science than matched control classes who used the curriculum without the ongoing monitoring and evaluation of their own and others’ research (White and Frederiksen, 1998). Students who engaged in the reflective assessment process “acquire knowledge of the forms that scientific laws, models, and theories can take, and of how the development of scientific theories is related to empirical evidence” (White and Frederiksen, 1998, p. 92). Students who participated in the laboratory experiences and other learning activities in this unit using the reflective assessment process were less likely to “view scientific theories as immutable and never subject to revision” (White and Frederiksen, 1998, p. 72). Instead, they saw science as meaningful and explicable. The ThinkerTools findings support the idea that attention to nature of science issues should be an explicit part of integrated instructional units, although even with such attention it remains difficult to change students’ ideas (Khishfe and Abd-el-Khalick, 2002).

A survey of several integrated instructional units found that they seem to bridge the “language gap” between science in school and scientific practice (Duschl, 2004). The units give students “extended opportunities to explore the relationship between evidence and explanation,” helping them not only to develop new knowledge (mastery of subject matter), but also to evaluate claims of scientific knowledge, reflecting a deeper understanding of the nature of science (Duschl, 2004). The available research leaves open the question of whether or not these experiences help students to develop an explicit, reflective conceptual framework about the nature of science.

Cultivating Interest in Science and Interest in Learning Science

Evidence from Research on Typical Laboratory Experiences

Studies of the effect of typical laboratory experiences on student interest are much rarer than those focusing on student achievement or other cognitive outcomes (Hofstein and Lunetta, 2004; White, 1996). The number of studies that address interest, attitudes, and other affective outcomes has decreased over the past decade, as researchers have focused almost exclusively on cognitive outcomes (Hofstein and Lunetta, 2004). Among the few studies available, the evidence is mixed. Some studies indicate that laboratory experiences lead to more positive attitudes (Renner, Abraham, and Birnie, 1985; Denny and Chennell, 1986). Other studies show no relation between laboratory experiences and affect (Ato and Wilkinson, 1986; Freedman, 2002), and still others report laboratory experiences turned students away from science (Holden, 1990; Shepardson and Pizzini, 1993).

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement