provide direct estimates of the effects of long-term, low-dose, low-LET radiation. It should be noted however that even with the increased sensitivity, the combined analyses are compatible with a range of possibilities, from a reduction of risk at low doses to risks twice those on which current radiation protection recommendations are based.

Veterans Exposed to Radiation Through Weapons Testing

An example of man-made radiation exposures experienced by large numbers of people in the past is the experience of the U.S. atomic veterans during and after World War II. From 1945 to 1962, about 210,000 military and civilian personnel were exposed directly at a distance to aboveground atomic bomb tests (about 200 atmospheric weapons tests were conducted in this period).14 In general, these exercises, conducted in Nevada, New Mexico, and the Pacific, were intended to familiarize combat teams with conditions that would be present during a potential war in which atomic weapons might be used. As an example, in the series of five atmospheric tests conducted during Operation UPSHOT-KNOTHOLE, individual battalion combat teams experienced low-LET γ-ray doses as low as 0.4 mSv and as high as 31 mSv. This range of exposures would correspond to the equivalent of about five chest X-rays for the lowest-exposed combat team to approximately 390 chest X-rays for the highest-exposed combat team (by assuming a dose from one chest X-ray to be about 0.08 mSv).

EVIDENCE FOR ADVERSE HEALTH EFFECTS SUCH AS CANCER AND HEREDITARY DISEASE

The mechanisms that lead to adverse health effects after exposure to ionizing radiation are not fully understood. Ionizing radiation has sufficient energy to change the structure of molecules, including DNA, within the cells of the human body. Some of these molecular changes are so complex that it may be difficult for the body’s repair mechanisms to mend them correctly. However, the evidence is that only a very small fraction of such changes would be expected to result in cancer or other health effects. Radiation-induced mutations would be expected to occur in the reproductive cells of the human body (sperm and eggs), resulting in heritable disease. The latter risk is sufficiently small that it has not been detected in humans, even in thoroughly studied irradiated populations such as those of Hiroshima and Nagasaki.

As noted above, the most thoroughly studied individuals for determination of the health effects of ionizing radiation are the survivors of the Hiroshima and Nagasaki atomic bombs. Sixty-five percent of these survivors received a low dose of radiation (less than 100 mSv; the definition of low dose used by this BEIR VII report). A dosage of 100 mSv is equivalent to approximately 40 times the average yearly background radiation exposure worldwide from all sources (2.4 mSv) or roughly 100 times the worldwide background exposure from low-LET radiation, the subject of this report. At dose levels of about 100 to 4000 mSv (about 40 to 1600 times the average yearly background exposure), excess cancers have been observed in Japanese atomic bomb survivors. Excess cancers represent the number of cancers above the levels expected in the population. In the case of in utero exposure (exposure of the fetus during pregnancy), excess cancers can be detected at doses as low as 10 mSv.15 For the radiation doses at which excess cancers occur in the Hiroshima and Nagasaki studies, solid cancers16 show an increasing rate with increasing dose that is consistent with a linear association. In other words, as the level of exposure to radiation increased, so did the occurrence of solid cancers.

Major advances have occurred during the last decade in several key areas that are relevant to the assessment of risks at low radiation doses. These advances have contributed to greater insights into the molecular and cellular responses to ionizing radiation and into the nature of the relationship between radiation exposure and the types of damage that underlie adverse health outcomes. Also, more data on radiation-induced cancers in humans have become available since the previous BEIR report on the health effects of low-dose, low-LET radiation, and those data are evaluated in this report.

THE BEIR VII RISK MODELS

Estimating Cancer Risk

An important task of the BEIR VII committee was to develop “risk models” for estimating the relationship between exposure to low levels of low-LET ionizing radiation and harmful health effects. The committee judged that the linear no-threshold model (LNT) provided the most reasonable description of the relation between low-dose exposure to ionizing radiation and the incidence of solid cancers that are induced by ionizing radiation. This section describes the LNT; the linear-quadratic model, which the committee adopted for leukemia; and a hypothetical linear model with a threshold. It then gives an example derived from the BEIR VII risk models using a figure with closed circles representing the frequency of cancers in the general population and a star representing estimated cancer incidence from ra-

14  

National Research Council. 2003. A Review of the Dose Reconstruction Program of the Defense Threat Reduction Agency. Washington, DC: National Academies Press, http://www.nap.edu/catalog/10697.html.

15  

Doll, R., and R. Wakeford. 1997. Risk of childhood cancer from foetal irradiation. Brit J Radiol 70:130–139.

16  

Solid cancers are cellular growths in organs such as the breast or prostate as contrasted with leukemia, a cancer of the blood and blood-forming organs.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement