comparable with that of manned aircraft, manned versus unmanned development and acquisition costs are essentially comparable. While this may be attributable to the fact that the industry is much lower on the learning curve with UAVs compared with manned aircraft, early expectations that UAVs could be developed and procured at significantly lower cost than their manned equivalents have not materialized. However, even with UAV experience being relatively immature compared with that of manned aircraft, it has become increasingly clear that the program cost drivers for manned and unmanned aircraft are identical—requirements and requirement stability. Thus, UAV developers need to continue pursuit of UAVs as a lower-cost alternative. In fact, as UAV systems mature, there will be opportunities to significantly reduce overall development and acquisition costs in the future.

Opportunities for Future Program Cost Savings

Because of the fundamentally distributed nature of UAV systems, there will be opportunities for developers of future UAVs to take advantage of existing system components, as opposed to developing new elements that could be optimum for the new applications but at higher development and acquisition cost. In order to achieve this goal, however, it will be essential that naval UAV system architectures be designed to standardized interface requirements at a minimum.

Culture Acceptance

The last but perhaps most important issue affecting UAV deployment in support of naval operations is cultural acceptance. This well-known issue does not need to be further elaborated here, except to note that success breeds success. UAV program decisions, therefore, need to be constantly evaluated from the perspective of their long-term program impact. Shortsighted decisions that adversely affect UAV system reliability, maintainability, and safety could have detrimental effects that extend beyond an individual program. For example, UAV lessons learned have shown that the selection of remotely piloted takeoff and landing can minimize early development cost but result in substantially higher attrition and overall life-cycle costs compared with those for automated takeoff and landing.


Conclusions and recommendations based on the preceding UAV background and discussion are presented in the following subsections.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement